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Abstract
Why do artificial neural networks model language so well? We claim that in order

to answer this question and understand the biases that lead to such high performing

language models—and all models that handle language—we must analyze the train-
ing process. For decades, linguists have used the tools of developmental linguistics to

study human bias towards linguistic structure. Similarly, we wish to consider a neural

network’s training dynamics, i.e., the analysis of training in practice and the study of

why our optimization methods work when applied. This framing shows us how struc-

tural patterns and linguistic properties are gradually built up, revealing more about why

LSTM models learn so effectively on language data.

To explore these questions, we might be tempted to appropriate methods from devel-

opmental linguistics, but we do not wish to make cognitive claims, so we avoid analo-

gizing between human and artificial language learners. We instead use mathematical

tools designed for investigating language model training dynamics. These tools can

take advantage of crucial differences between child development and model training:

we have access to activations, weights, and gradients in a learning model, and can

manipulate learning behavior directly or by perturbing inputs. While most research in

training dynamics has focused on vision tasks, language offers direct annotation of its

well-documented and intuitive latent hierarchical structures (e.g., syntax and seman-

tics) and is therefore an ideal domain for exploring the effect of training dynamics on

the representation of such structure.

Focusing on LSTM models, we investigate the natural sparsity of gradients and ac-

tivations, finding that word representations are focused on just a few neurons late in

training. Similarity analysis reveals how word embeddings learned for different tasks

are highly similar at the beginning of training, but gradually become task-specific. Us-

ing synthetic data and measuring feature interactions, we also discover that hierarchical

representations in LSTMs may be a result of their learning strategy: they tend to build

new trees out of familiar phrases, by mingling together the meaning of constituents so

they depend on each other. These discoveries constitute just a few possible explana-

tions for how LSTMs learn generalized language representations, with further theories

on more architectures to be uncovered by the growing field of NLP training dynamics.
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Lay Summary
A lot of recent work has asked how neural networks produce such effective representa-

tions of language. Some of this work has asked, “How is linguistic structure encoded

in this representation?” Some work has asked, “How does the learning process lead

to such effective representations?” We want to ask a combination of these questions:

How does the learning process lead to the encoding of linguistic structure?

To answer this question, we look at the representations of words over the course of

training and we describe how they change. We see that models learn short sequences

first, building long sequences out of them, and that therefore the representations con-

tain information about simple word properties long before they contain information

about the larger document they came from.
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Chapter 1

Introduction

“Maybe if I buy some I can learn how to use them,” said Milo

eagerly as he began to pick through the words in the stall. Finally

he chose three which looked particularly good to

him—“quagmire,” “flabbergast,” and “upholstery.” He had no

idea what they meant, but they looked very grand and elegant.

Norton Juster, The Phantom Tollbooth

Language models (LMs), a crucial element of applications that require text genera-

tion, have seen many implementations in their decades-long history. The current the

era of artificial neural networks has seen a surge in exuberant claims of underlying

linguistic competence. However, we still see a lack of accompanying serious inves-

tigation into how modern models like LSTMs (Hochreiter and Schmidhuber, 1997b)

actually learn.

For years, the LM world was dominated by n-gram models (Shannon, 1948; Rosenfeld,

2000). These models would directly store sequences of words and record their prob-

abilities, holding to a Markov assumption that history was only relevant a predefined

distance back. In an n-gram model, we would record a table directly mapping “sen-

tence”, “example sentence”, and “silly example sentence” to the number of times they

were observed in a training corpus. Confronted with n-gram models, it would have

been unusual to claim that such a table fundamentally represented syntax.1 But mod-

1This is not to say such claims were not made. A Markov model based on shifting windows (easily
implemented with an n-gram lookup table) seems to be the basis of the Sausage Machine, which Frazier
and Fodor (1978) provided as a model of human language processing. Later, Wanner (1980) would
declare “the Sausage Machine’s putative explanation of . . . behavior . . . is simply incorrect”, criticizing
the over-interpretation of a mechanical model, in a tradition that continues to this day in NLP.

1



Chapter 1. Introduction 2

ern language models, from Transformers (Vaswani et al., 2017) and other fully atten-
tional models (Brown et al., 2020; Liu et al., 2019b; Devlin et al., 2019; Yang et al.,

2019) trained on petabytes of internet data, to more lightweight Long Short Term
Memory networks (LSTMs; Hochreiter and Schmidhuber, 1997b), are frequently

subject to such claims (Linzen et al., 2016; Lakretz et al., 2019; Kuncoro et al., 2018;

Lu et al., 2020; Vig and Belinkov, 2019; Htut et al., 2019; Vashishth et al., 2019; Wiegr-

effe and Pinter, 2019; Clark et al., 2019; Voita et al., 2019b; Marecek and Rosa, 2019).

Gulordava et al. (2018), for example, suggested that “the ability to capture structural

generalizations is an important aspect of what makes the best RNN architectures so

good at language modeling”—or even further, “Recurrent neural networks empirically

generate natural language with high syntactic fidelity.” (Hewitt et al., 2020). For ex-

ample, LSTMs prefer “complains” over “the philosopher the Greeks like complain”,

modeling relative clauses syntactically rather than just using the most recent noun’s

(“Greeks”) inflection (Gulordava et al., 2018).

The design of these opaque modern models does not explicitly encode human linguis-

tic intuitions such as underlying syntactic structure—and yet, their success at language

modeling and generation seems to indicate that the trained models encode these intu-

itions, enough that researchers ask questions about how. A variety of methods have

therefore been employed to test these models for syntactic structure. Many methods

analyze the intermediate representations and internal behavior of language models.

Some probe the representations with small classifiers, looking for properties like part

of speech implicitly encoded in the vectors that represent particular words (Belinkov

et al., 2017; Voita and Titov, 2020). Others consider whether the geometry of these

representational spaces reveals the connections between words in a sentence (Hewitt

and Manning, 2019). Still other tests consider what words a model pays attention to at

each step in the sequence (Voita et al., 2019b; Clark et al., 2019). These methods share

a property: they examine the fully trained model, considering only how it encodes lan-

guage after it has been fully trained. This dissertation moves beyond such a limited

analysis, developing an understanding of the model by investigating the entirety of the

training process.
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1.1 The Lens of Inductive Bias

Often, questions reach beyond a particular set of parameters and behavior, asking ques-

tions about the inductive bias associated with a model. This term is often nebulous

in use, but broadly it refers to the assumptions made by a learning algorithm. This set

of assumptions form a resulting model’s biases—in particular, those that don’t come

from the training data itself. No set of biases are universal; for example, biases that

support language modeling on English might damage the same model’s performance

on Chinese. Such trade-offs are a proven limit of learning algorithms, demonstrating a

rule known as the No Free Lunch Theorem (Wolpert and Macready, 1997).

Geirhos et al. (2020) describe inductive bias as consisting of four components:

1. Structure: The functions chosen to combine parameters and inputs. In this

thesis, architectures are centered around an LSTM module, though many modern

language models tend to be fully attentional and use Transformers2.

2. Experience: The training data used to train the model.

3. Goal: The objective optimized in training. Most neural classifiers use a cross-

entropy loss function, but Geirhos et al. (2020) point out that regularizers are

often used to prevent overfitting by memorizing training data or using other un-

desirable heuristics.

4. Learning: The optimization process itself. This includes decisions such as

whether to use gradient clipping or some implementation of momentum.

In practice, however, we cannot disentangle these factors entirely3. An optimizer runs

on a loss surface defined by the relationship between goal and structure, as guided

by experience. These different factors are selected specifically expecting the others,

e.g., while we use Adam (Kingma and Ba, 2015) to help optimize an LSTM for lan-

guage data, it might not help the same architecture to memorize random noise. As

Wang (2020) put it, the simultaneous consideration that has gone into choosing a goal,

engineering an architecture, and designing an optimizer to match means that every

modern neural network is “a consequence of data-driven optimization, engendering

the inductive bias—the free lunch is paid for by all the unfit that failed to survive nat-

ural selection”. Because the aspects of inductive bias have all been optimized jointly,

2Throughout the thesis, we note how our methods and results can generalize to attentional models.
3We can still try, with dataset manipulation (Section 2.2), ablation tests, or causal analysis.
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we have presented empirical results that treat the learning process as a whole, rather

than force our expectations onto a particular architecture or corpus.

1.1.1 The Role of Inductive Bias in NLP

Inductive bias is crucial to the performance of language models, or any model handling

natural language—indeed, any predictive model at all. Although massive Transformers

are the high-performance darlings of the current NLP landscape, recurrent operations

like those in the LSTM are still valuable. The smaller the training data, the more

crucial inductive bias becomes to prevent the model from memorizing or adopting

overly complex heuristics.

Tran et al. (2018) found that tasks which required a model to represent latent hierar-

chical structure, such as subject-verb agreement (Linzen et al., 2016) and the artificial

logic language of Bowman et al. (2015), saw higher performance from RNNs than

fully attentional models. They therefore demonstrated the role of the architecture itself

in imposing inductive bias.

The architecture is not the only element in inductive bias, however. Abnar et al. (2020)

connected inductive bias back to the goal during learning by demonstrating how fully

attentional models benefited by learning from the representations produced by recur-

rent models. Levy and Goldberg (2014) illustrated that the word2vec (Mikolov et al.,

2013b) objective and regularizer were identical to a combined objective that could be

optimized by matrix factorization, but they could not achieve the same performance

with a representation using this equivalent matrix decomposition. This performance

gap is likely because the optimizer is essential for implicitly regularizing the word2vec

objective, in addition to the goal and architecture.

If any ML domain were oriented towards an investigation into the biases of training

processes, it is language. For decades, linguists have asked whether humans have

some inherent inductive bias that points us towards linguistic structure (Chomsky and

Keyser, 1988), or whether we use a generic neural architecture that gradually learns

language the same as it would any other set of rules: through overwhelming input and

feedback. This question is not answered by studying how a person processes a sentence

after a lifetime of language exposure. Instead, linguists apply crucial tools from the

field of developmental linguistics, which studies how human language is acquired over

the course of a child’s development. Our goal in this thesis is likewise to present
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empirical work on the acquisition of language in artificial neural networks.

We claim that in order to understand the biases that lead to high performing
language models—and all models that handle language—we must analyze the
training process. Studies of how a model optimization regime works in practice, i.e.,

of training dynamics, will reveal how structural patterns and linguistic properties such

as syntax are gradually built up hierarchically, revealing why neural language models

learn so effectively and how they “see” the data.

If we wish to explore questions about how LSTMs learn language, we might be tempted

to appropriate methods directly from developmental linguistics. However, in this work

we avoid framing artificial neural networks as cognitive models. We instead use spe-

cific and mathematical tools for investigating language model training dynamics, such

as synthetic datasets and similarity-based model comparisons. These tools can take ad-

vantage of crucial differences between child development and model training: we have

access to activations, weights, and gradients in a learning model, and can manipulate

learning behavior directly or by perturbing inputs. The tools we use often come from

computer vision research, as research on training dynamics tends to focus solely on

vision tasks, but language has well-documented and intuitive latent hierarchical struc-

tures (e.g., syntax and semantics) which make it an ideal domain for exploring the

effect of training dynamics on the representation of such structure.

1.2 Structure of Thesis

We claim that training dynamics provide an essential view for understanding lan-
guage structure in LMs. We support this claim with examples from several case

studies, introducing new tools for inspecting neural networks during training. Along

with background and commentary, we illustrate these tools, and investigate what they

tell us about the development and bias of language models. The novel work in this the-

sis appears in order from the most conventionally language-motivated (“NLP”) to the

most conventionally domain-abstracted (“machine learning”). This leads to a chapter

structure as follows:

Chapter 2: Background: Language Structure in Models This thesis lies at the in-

tersection of two existing fields. The first is NLP interpretability, which focuses on

understanding why text models work by investigating how their behavior expresses



Chapter 1. Introduction 6

fundamental linguistic properties, in particular syntax and semantics. The interpreta-

tion methods we focus on show how these structures result (or fail to result) in the

biases of model architectures and in the behavior of trained models.

Chapter 3: Background: Training Dynamics The second field we survey is training

dynamics, which aims to describe how a model changes as it trains, often investigating

the biases that allow a model to learn effectively. We discuss how a number of works

imply that, at varying scales, training happens in phases. We then discuss how the

movement of weights during training responds to the underlying structure of input

data. Finally, we consider a variety of methods commonly used to investigate learning

dynamics and the conclusions about training that they have reached. Some of these

methods (particularly SVCCA; Section 2.4.2.1.1) are used directly in this thesis, while

others have led to conclusions about the training process that inspire further work here.

Chapter 4: Beyond Diagnostic Classifiers: Probing Language Model Develop-

ment How does an LSTM LM’s acquisition of language information vary, when we

compare local syntactic properties with source document information? We discover

that conventional diagnostic classifiers, a popular method for assessing the linguis-

tic properties of language models, are not sensitive enough to capture changes during

training, so we develop an alternate method. We apply SVCCA, a simple and flexible

similarity measurement, to compare the development of LSTM language models pre-

dicting the next word with LSTM taggers predicting general categories (part of speech,

semantic tag, and source; which vary in the type of data used for accurate tagging). We

find that part-of-speech is learned earlier than topic, indicating that local structure is

learned well before long-distance information. This discovery inspired work on hier-

archical construction of meaning in Chapter 5. We also find that an LM’s recurrent

layers become more task-independent over the course of training, while an embedding

layer becomes more task-specific later in training. We point out that the tendency to

lose shared input structure later in training resembles the predictions of a controversial

theory about phase-based learning, the Information Bottleneck Hypothesis.

Chapter 5: Beyond Probing: The Development of Word Interdependence Why

do hierarchical structures like syntax tend to emerge in LSTMs? We move from a

view of the output representation space as a whole to focus on local interactions be-

tween word pairs, asking how an LSTM moves from shorter relations like those re-
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quired for POS prediction to longer relations like those required for topic tagging in

Chapter 4. We measure interactions between word pairs by extending a recent method

called Contextual Decomposition to a measure we call Decompositional Interdepen-

dence. Applying this measure in a set of experiments on synthetic languages supports

a specific hypothesis about how hierarchical structures are discovered over the course

of training: that LSTMs rely on smaller constituents as scaffolding for larger trees,

rather than learning longer-range relations (e.g., “either”/“or”) independently of their

intervening constituents.

Chapter 6: Beyond Words: The Development of Feature Sparsity How does the

distribution of vector unit magnitude and neuron importance change over the course

of training? Here, we investigate a tendency in LSTMs to change in the sparsity of

their gradients and activations over time. We find that frequent input words are associ-

ated with sparse activations, while frequent target words are associated with dispersed

activations but sparse gradients (which relate to neuron salience). We find that gra-

dients associated with function words are more sparse than the gradients of content

words, even controlling for word frequency—could this sparsity signify a stronger role

in defining linguistic structure? These properties change dramatically over time, with

some layers beginning dense and growing sparser while others remain stable. We con-

sider whether the gradient sparsification which we observe may be an expression of

a compression phase from the Information Bottleneck Hypothesis, similar to the link

from Chapter 4.

Chapter 7: Conclusion We discuss recent developments building on the work in

this thesis. Based on these developments in addition to our own work, we explore the

implications of this thesis and possible future directions.

1.3 Contributions

A Note on Contributions All papers reprinted in this thesis are joint work with my

supervisor, Adam Lopez. In all cases, I conceived and implemented the original ideas,

and Dr. Lopez helped strengthen these ideas through discussion, especially by chal-

lenging them and demanding more specific claims and stronger evidence. The papers

themselves were written primarily by me, with Dr. Lopez editing, “killing my dar-

lings” (Quiller-Crouch, 1916), and adding some of the visualizations.



Chapter 1. Introduction 8

• Understanding Learning Dynamics of Language Models With SVCCA

– To our knowledge, this is the first in-depth study of learning dynamics of

neural language models.

– We introduce a flexible new probing method based on model similarity,

which enables us to compare learned representations across time and across

models. We compare the representations produced by language models

(word predictors) and tag predictors. This probing method does not require

us to have annotated evaluation data, and is efficient to train because it is

based on simple matrix factorizations.

– We find that coarse part of speech is learned first, and topic information

is learned last, with fine-grained and semantic information learned in be-

tween. Early in training, models targeting different tasks with the same

inputs tend to produce similar representations, and then specialize to their

tasks.

– Different layers exhibit different behavior. Recurrent layer representations

become more generic in late training, but embedding layers become more

specialized to their task late in training. However, embedding layers remain

very generic throughout training, explaining the effectiveness of pretrained

embeddings to initialize representations for other tasks.

• LSTMs Compose—and Learn—Bottom-up

– We develop an extension of Contextual Decomposition called Decompo-

sitional Interdependence (DI). DI computes the level of nonlinear interac-

tions there are between two words at a particular timestep, indicating the

level to which they influence each other’s “meaning” in context.

– We test DI on an English LSTM LM, finding that when average DI is strat-

ified by the word pair’s sequential proximity (which is highly correlated

with DI), higher DI indicates closer syntactic distance. This trend holds re-

gardless of whether the words considered are closed or open POS classes.

– We introduce the idea of a subtree acting naturally as scaffolding to build an

interrelated meaning for a nearby item while predicting the next term in a

sequence. In order to test the idea that known constituents act as scaffolding

for longer-distance relations in LSTMs, we create a synthetic dataset with
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long distance bracketing expressions surrounding constituents of varying

familiarity. We find that poor generalization performance after training

with familiar intervening spans can be attributed to the high interdepen-

dence between the constituent and the opening symbol of the bracketing

expression. We conclude that LSTM learning is biased towards bottom

up learning, using a known constituent as a scaffold to support new long

distance rules.

• Sparsity Emerges Naturally in Neural Language Models

– This work represents the first application in NLP of the Taxi-Euclidean

norm for measuring soft sparsity.

– We find that gradient concentration at the final RNN layer depends on a

target word’s POS class (open or closed), even after controlling for word

frequency. Frequent target words from closed classes start out with highly

concentrated gradients and soon stabilize, while frequent words from open

classes continue to become more concentrated throughout training. We

posit that this represents a transition from learning basic syntactic structure

to learning general content words.

– We find that the recurrent layers quickly learn to correlate sparsity with

word frequency in their activations, but gradually the embedding layer sur-

passes the recurrent layers in this respect as the network converges.



Chapter 2

Background: Language Structure in

Models

“A slavish concern for the composition of words is the sign of a

bankrupt intellect,” roared the Humbug, waving his cane

furiously.

Norton Juster, The Phantom Tollbooth

A deep learning model operates by passing vector representations (also called acti-
vations) from one module layer to another during inference (i.e., when a text model

makes a prediction). The model is not taught explicitly by humans to produce these

representations. Instead, it is exposed to training samples, and performs gradient de-

scent on the weights of its modules by backpropagating the gradient of the error of its

predictions on these samples back to the first layer. Neither the inference nor training

process is designed to be human-interpretable. Instead, these processes are surpris-

ingly generic and can be used on many statistical models, and are highly efficient on

modern hardware.

Despite widespread use and high accuracy, neural networks are therefore widely re-

garded as mysterious, “opaque and hard to interpret” (Elazar et al., 2020), leading

to a “reputation of being black boxes” (Alain and Bengio, 2018). Their high perfor-

mance does not translate to trust that they will handle edge cases that humans manage

with ease, such as correctly identifying the subject of a verb and therefore choosing

to inflect it correctly in a center embedded sentence like, ”The best philosophers in

the agora [is/are] with Socrates..” Much of the literature reviewed below carries the

10
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implicit assumption that a model is more reliable if it operates internally more like a

human1.

Motivated by a desire for more trustworthy models as well as basic scientific curiosity,

an abundance of recent work (Belinkov and Glass, 2019; Limisiewicz and Marecek,

2020) has focused on understanding the construction of a word representation during

inference . In this chapter, we will survey a range of methods for understanding these

models and the representations they use internally, which serve as key groundwork for

the methods applied in our novel work. The chapter is ordered starting from meth-

ods that treat the model of interest as a black box and ending with methods that try

to understand the intrinsic structure of the representations themselves. Some meth-

ods (Section 2.2) avoid direct access to the internal representations, probing with test

data by measuring responses to particular inputs. Diagnostic Classifiers (Section 2.3)

instead target intermediate representations by considering how they assist with auxil-

iary tasks. Finally, we explore methods (Section 2.4) that take full advantage of the

access we have to the representational spaces that the model produces, measuring the

intrinsic properties that align with human intuitions about how language data should

be encoded. Before launching into these methods, we begin with a brief overview of

LSTMs, the neural architecture we will focus on in this thesis (Section 2.1).

2.1 The LSTM Language Model

The novel work in this thesis focuses on experimental work on LSTM language mod-

els, which are autoregressive models, meaning they take a sequence as input and pre-

dict the next word (or character) at each point. These models have recurrent modules:

they iterate over a sequence of arbitrary length, applying the same function to each

word, with the output from the previous timestep included as a secondary input at the

next timestep. In this case, the module uses both cell state ct and hidden state ht as

inputs to the same function at the next timestep, along with the new input word xt :

ht+1,ct+1 = LSTM(ht ,ct ,xt) (2.1)

These recurrent functions are composed of a number of gates, each of which applies

a nonlinear function to some combination of the input and hidden state. When we
1We note the exception of fairness research, where a model is often considered more reliable when it

avoids human-like biases, in particular the tendency to learn prejudices like the assumption doctors are
men because they frequently are so in the training corpus.
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apply the by convention called the forget gate with activation f t , the input gate with

activation it , and the output gate with activation ot , we produce the new cell state ct

and hidden state ht , before moving on to the next input xt+1. For each gate, we learn

weights and bias, e.g., Wf and b f respectively for the forget gate.

f t = σ(Wf xt +Vf ht−1 +b f )

it = σ(Wixt +Viht−1 +bi)

ot = σ(Woxt +Voht−1 +bo)

c̃t = (Wc̃xt +Vc̃ht−1 +bc̃)

ct = f t · ct−1 + it · c̃t

ht = ot · tanh(ct)

(2.2)

A multilayer LSTM would use ht as input to the next LSTM module layer, and the

last layer would use its output ht to produce logits. These logits are used as inputs to

a softmax function for a final distribution over target labels (in the case of language

models, a word prediction).

x̂t+1 = Softmax(WLht) (2.3)

Because the LSTM is trained by standard gradient descent methods and is not explic-

itly designed to be interpretable, it exhibits the same opacity that plagues most neural

networks. The vector ht , which represents the word in context as input for the next

module, is the focus of particular attention, as is the memory cell ct . In this chapter,

we will consider a variety of methods to understand LSTM language models (and other

text processing models) better.

2.2 Interrogation With Datasets

Some methods for understanding the behavior of neural networks are inspired by tech-

niques in cognitive science of language (Bock, 1986; Miller and Chomsky, 1963; Mac-

Donald et al., 1994; Futrell and Levy, 2017), where the near-total blackbox of the hu-

man brain permits access only to inputs and outputs2. In these cases, a stimulus is

2Although methods like fMRI analysis allow researchers to use some information about the intensity
of regional activity in the brain, this data is far less than our perfect access to full information about each
neuron’s firing in real-time.
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provided (for example, a syntactically ambiguous phrase) and the resulting behavior is

read for an interpretation of the stimulus.

In order to understand the limitations of models in practice given natural language

inputs, a variety of challenge datasets have emerged. Some are focused on fairness

and the treatment of gender (Rudinger et al., 2018), but others have the sort of structural

focus that targets the inductive bias of the training algorithm and architecture (Emelin

et al., 2020; Linzen et al., 2016; Futrell et al., 2019). Some synthetic datasets take the

form of augmented natural language sentences. These are deployed at test time in order

to investigate whether the model has successfully acquired particular language rules,

rather than using simplified heuristics. For example, Linzen et al. (2016) tested what

kind of rule a network applies to match the inflection of a verb with its subject. They

used examples with distractor noun phrases, as italicized in the sentence, “The best

philosophers in the agora are with Socrates.” A model that makes number inflection

judgments purely based on proximity would assign higher probability to “is”, which is

predicted by the distractor noun (“agora”, the most recent noun), rather than to “are”

based on the actual subject (“philosophers”).

2.2.1 Artificial Languages

In order to understand the inductive bias of neural networks that is imposed by the

architecture and training of the model, we need to control the information yielded by

the training data itself. This task is commonly accomplished through synthetic data.

By manipulating training through synthetic data, we uncover the tendencies of model

training under optimal and perturbed conditions. In these cases, the synthetic data

needs to be introduced during training in order to yield informative results. Because

we know how this training data was generated, we can test whether the model can

emulate the generation process.

Synthetic datasets can mimic natural language to study biases that enable or inhibit

grammatical rules. Ravfogel et al. (2019) generated synthetic versions of English

with slightly different grammatical rules, training RNNs to predict agreement features

for verbs. This task explicitly implements the decision that is implicit when an LM

chooses between two verb inflections like “is” and “are”. They found that overtly

marking morphological case improved performance, as did using subject-verb-object

word ordering (rather than artificially reordering the English sentences). Experiments

like these reveal the ways in which the underlying inductive biases of a neural network
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express themselves in language settings.

Mimicking natural language might also take the form of a template-generated subset of

English. McCoy et al. (2020), for example, generated datasets that trained sequence-

to-sequence networks to perform English question formation and verb reinflection, like

the transformation from, “Diogenes does scandalize the Greeks,” into, “Does Diogenes

scandalize the Greeks?” However, they generated a training set that offered ambiguous

evidence, so the model could either use the syntactic structure or simple sequential

ordering. They then use test cases that required syntactic rules for reordering, such

as “Philosophers who don’t live in barrels do dislike Cynics”. In the syntactic rule

case, the model would move the main auxiliary of the sentence to the beginning (“Do

philosophers who don’t live in barrels dislike Cynics?”), whereas in the sequential

case, it would move the first verb it encountered (“Don’t philosophers who live in

barrels do dislike Cynics?”). Because both latent tree structure and surface features

were available, McCoy et al. (2020) could observe which rules each model favored.

With real English generated from templates (Ravfogel et al., 2019), we can also test

models pretrained in English on the biases acquired during training (Warstadt et al.,

2020).

Bowman et al. (2015) and Hupkes et al. (2020) used artificial languages in experiments

to test whether neural networks were capable of learning various patterns. Merrill et al.

(2020) and Hewitt et al. (2020) instead proved analytically which artificial languages

RNNs could learn in theory. (In a minor victory for RNN chauvinists, Hewitt et al.

(2020) published a proof that RNNs could generate bounded-depth multi-symbol Dyck

languages in subexponential memory, while simultaneously Bhattamishra et al. (2020)

illustrated Transformers could not manage the same languages without custom posi-

tional encoding.) Weiss et al. (2018) measured the mismatch between rules an RNN

learned empirically and the theoretical capacities of its model family.

We use simple artificial languages to test the natural behavior of LSTMs in Chapter 5,

by testing how the model learns long-distance prediction rules in familiar or unfamiliar

contexts. We combine this approach with inspection of the vector representations that

the model uses internally, to investigate how these contexts are used.
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2.3 Diagnostic Classifiers

While targeted datasets can measure the behavior of trained neural networks, they can-

not reveal the internal logic of these models. Early efforts relied on diagnostic classi-
fiers (DCs) to understand the construction of linguistic structure as representations are

passed from one layer to the next. DCs are small peripheral models that use activations

at various points in the forward pass as input representations to predict particular word

labels (Belinkov et al., 2017; Hupkes and Zuidema, 2018; Adi et al., 2017; Conneau

et al., 2018).

A typical example would see a simple linear model extract information like the length

of the preceding sequence (Hupkes and Zuidema, 2018) or the part of speech of a

particular word (Giulianelli et al., 2018), although nonlinear models have also been

used (Belinkov et al., 2017). A simple DC, applied to hidden representation ht , opti-

mizes for accuracy of the predicted distribution on target linguistic property yt , e.g.,

the word’s part of speech:

ŷt =Wdcht +bdc (2.4)

If this linear classifier makes accurate predictions, the representation ht is said to en-

code the property in question.

2.3.1 Criticisms of probing

Diagnostic classifiers and other methods of probing have met strong criticism in the

NLP community. A frequent assumption researchers make when measuring the pres-

ence of a particular linguistic property with probes is the idea that the property is being

used by the model and thus essential for model performance. Ravichander et al. (2021)

questioned these fundamental assumptions, finding that DCs often detect linguistic

properties that are not needed for a model’s task. Furthermore, some information is

generally preserved about the entire input sequence, e.g., a contextual word embed-

ding may contain information as detailed as the word at a particular position in the

context (Conneau et al., 2018). Therefore, if we permit arbitrary probe architecture, a

DC could exhibit high accuracy on any solvable task (Pimentel et al., 2020b).

The ability of an arbitrary classifier to learn a function mapping from a contextual

representation to a linguistic property does not tell us much. Does the vector con-

tain information about the property (it would anyway; Pimentel et al., 2020b)? Does

the model use information about that property (it still might not; Ravichander et al.,
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2021)? We can’t answer these questions based on the accuracy of a single probe. In

fact, though some representations “probe” better than others, they may not be the ones

we want. Popular contextual representations are often worse inputs for POS tagger

probes than representations no one would use: randomly generated unigram repre-
sentation vectors for each word, presented without incorporating any sentence context

(Pimentel et al., 2020a; Zhang and Bowman, 2018)! For example, a vector from a

randomized table entry for the word “philosophy” would be easier to POS tag with

a diagnostic classifier, rather than a representation of the word “philosophy” that in-

cludes information about the entire sentence, “Diogenes hates philosophy homework”.

Though the high performance of randomized unigram representations is bad news for

the idea that a representation preferred by a probe is superior in general, it does tell

us that learned word embeddings cluster together, making it harder to learn dictio-

nary mappings from words to their most frequent part of speech. “Philosophy” is

almost always a noun, and it’s easier for the linear probe to learn a rule like that when

each word is far from every other word. Even a learned unigram representations like

word2vec Mikolov et al. (2013b) would learn similar representations for semantically

related words like “philosophical”, so the words might be mixed up while learning

dictionary mappings (Pimentel et al., 2020a). This clustering behavior is a property of

all used pretrained word embeddings. Therefore, we should be more concerned about

what a probe reveals about the intrinsic structure (Torroba Hennigen et al., 2020) of

a representation space, rather than whether a vector encodes linguistic information in

some general way. Section 2.4 will introduce some probes designed to reflect intrinsic

structure instead.

Constraining Models While this thesis focuses on the intrinsic structure of contex-

tual word and sentence representations, rather than on probing methods, it is worth

noting that many interpretability researchers have criticized classical probing meth-

ods based on issues like the preference to learn unigram dictionary mappings, and the

community has responded by limiting the complexity of the probes. First, the vectors

being probed contain trace information about the entire context (Conneau et al., 2018),

rendering all linguistic information available to a sufficiently complex probe (Pimentel

et al., 2020b). Some literature considered the linearity of the probe to be a signifi-

cant enough cap on complexity (Liu et al., 2019a; Alain and Bengio, 2018), but not

all representations are “expecting” to be processed by a linear classifier, rather than

a softmax function or other deeper layers; these classifiers often have higher perfor-
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mance on completely random unigram representations or other baselines (Hewitt and

Liang, 2019); and there is little discussion of the broader implications when we do

discover a particular property is linearly encoded. More recent work has developed

explicit constraints on model capacity (Hall Maudslay et al., 2020; Hewitt and Liang,

2019). Pimentel et al. (2020a)3 went further in measuring a property’s encoding ac-

cording to the trade-off between complexity and accuracy, rather than just measuring

the accuracy of a single trained probe with a particular complexity.

However, methods based on extending or constraining DCs do not address our pri-

mary criticism of these probes as a method of model interpretation, which is that the

classification accuracy of a particular probe model family does not give us any inter-

pretable model of the structure of the representation space. While methods based on

DCs remain popular thanks to their generality across both architectures and linguistic

properties, it is not clear what information we glean about linguistic structure from

these metrics. To gain insight into how the representation space behaves intrinsically,

we will instead resort to structural probes.

2.4 Structural Probes

What does it mean to a human that a logistic regression of one layer is capable of

extracting part of speech information from a particular representation? In response to

the simplistic interrogation of models through classifiers (Section 2.3), we may ask

whether these interpretation methods are themselves interpretable, and interpret model

structure through intrinsic or structural probes (Torroba Hennigen et al., 2020).

Fortunately, work has emerged that inspects contextual representations by examin-

ing their geometry (Section 2.4.1) or comparing them to other representational spaces

(Section 2.4.2). Other researchers fell back on techniques that identified which words

in a sentence were most important for prediction (Section 2.4.3), though new atten-

tional models suggested more intuitive and faithful ways of measuring word impor-

tance (Section 2.4.3.1). Approaches like these, which we now address, form our un-

derstanding of the intrinsic properties of vector representations.

3Co-first-authored by Naomi Saphra while writing this thesis.
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Socrates asked the student trick questions

ROOT

NSUBJ

IOBJ

OBJ

DET ADJ

Figure 2.1: A dependency parsed sentence. The syntactic distance between “Socrates”

and “trick” is 3 because there are three edges to traverse between them.

2.4.1 Vector Geometry

One alternative to the DC approach of interpreting vector representations is to consider

the geometric relations between those representations and compare them to known

language properties. For years, word embeddings have been evaluated based on their

clustering of similar words and even on vector arithmetic often said to correspond

to analogical reasoning (Mikolov et al., 2013a; Pennington et al., 2014; Saphra and

Lopez, 2016).

Although it was common to use geometric and subspace methods to view unigram

word embeddings (Mimno and Thompson, 2017; Mu and Viswanath, 2018), contextual

word vectors presented an opportunity to understand representations in terms of their

underlying linguistic properties within a sentence. Each word now corresponded to

infinite possible representations based on its context (Ethayarajh, 2019), so instead of

viewing words in terms of their relations in an abstract dictionary, we could analyze

relations between specific occurrences of words.

Hewitt and Manning (2019) attempted to align arbitrary vector representations with the

notion of syntax by learning a projection from the representational space produced by

the model onto a space where distances between words resembled syntactic distance,

the number of edges between words on a dependency tree (Figure 2.1). They found that

syntactic distance was similar to the square of the Euclidean distance after a learned

linear projection. Reif et al. (2019) suggested a possible explanation for why the

squared distance was needed: trees cannot isometrically map onto a Euclidean space.

Consider “Socrates reads Diogenes polemicals”. For an embedding in which d(x,y)

reflects the parse distance between x and y in the sentence context, we should see:

d(Socrates,Diogenes)≈ d(Socrates, reads)+d(reads,Diogenes)

which in a Euclidean space would mean that these three words are embedded along a
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straight line. In the same embedding space, we should find that

d(Socrates,polemicals) = d(Socrates, reads)+d(reads,polemicals)

and again these three should be collinear—but this is only possible if “polemicals” has

the same embedding as “students”. In order to avoid this collision, the square term

embeds each word at the nodes of a hypercube in a Pythagorean space, where the

Euclidean collinearity axiom no longer applies.

Geometric analyses like these are appealing because they are intuitive, and seem to

explain the underlying mechanisms of models. But they require commitment to a spe-

cific well-understood geometric space like the Pythagorean embedding, interpretations

that do not always underlie highly complex, overparameterized models. More flexible

structure analyses usually fall into the general category of similarity analysis.

2.4.2 Similarity Analysis

Hewitt and Manning (2019), described above, took the view that a learned represen-

tation had syntactic structure if its distances (after a learned projection) resembled

syntactic distances. In general, we might like to say that the parse tree representation

is similar to the learned representation, and therefore have some shared structure.

This philosophy has inspired a number of methods for understanding the structure of a

representation space. To perform a similarity analysis, we take two ways of viewing a

word and use some similarity metric to measure how much underlying structure those

representations share. We might be comparing a learned representation to an explicitly

structured representation like the parse trees in Hewitt and Manning (2019). More

often we are comparing the subspaces or manifolds covered by two different learned

representations. Let’s look at some common methods.

2.4.2.1 Canonical Correlation Analysis (CCA)

First, we introduce CCA, a method for computing the similarity of two different sub-

spaces while removing information that’s not shared between them. Let us consider the

case in which we want to compute the similarity of two different vectors at ∈ Rd1 and

bt ∈ Rd2 , which represent the same word xt . For each data point sampled—in our case

a word, with two different vector representation—each vector forms a row of a ma-

trix: A ∈ Rn×d1,B ∈ Rn×d2 , where each row pair at ,bt represents the same data differ-

ently. Using the classic matrix factorization method of Singular Value Decomposition
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(SVD), Canonical Correlation Analysis (CCA) learns linear projections from matrix

representations. In order to find these projections, we identify vectors u ∈Rd1,v ∈Rd2

such that uT at and vT bt are maximally correlated over all samples i. This correlation

is then used as a similarity metric across the matrix representations.

The objective of CCA, then, is to maximize the Pearson correlation (Formula 2.5) of

the projections.

ρ(x,y) =
Cov(x,y)√

Var(x)
√

Var(y)
(2.5)

Recall the definitions of these statistical properties:

Var(X) = E[X−E[X ]]2 (2.6)

Cov(X ,Y ) = E[(X−E[X ])(Y −E[Y ])] (2.7)

Then, if we have centered A and B, we can simplify the objective as:

ρ(uT a,vT b) =
E[(uT a)(vT b)]√
E[uT a]

√
E[vT b]

(2.8)

=
E[(uT abT v)]√

E[uT aaT u]
√
E[vT bbT v]

(2.9)

=
uT KABv√

uT KAAu
√

vT KBBv
(2.10)

with KAA and KAB the covariance and cross-covariance matrices, respectively. We can

constrain the denominators to 1, as rescaling either u or v by any constant will not

affect the objective.

Therefore, we have turned the objective into a convex optimization problem

max
u∈Rd1 ,v∈Rd2

uT KABv

s.t. uT KAAu = 1

vT KBBv = 1

(2.11)

This constrained optimization problem forms a generalized eigenvector problem, mean-

ing it can be solved repeatedly by choosing the top eigenvectors. Thus we can choose

an arbitrary dimension no larger than the rank of the lower-rank matrix between X ,Y

for the space data is projected onto. This makes CCA a rank-reduction method, though

one which simultaneously reduces the rank of two different views of the data.
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2.4.2.1.1 Variations on CCA CCA has been expanded in a number of ways. Sin-
gular Value Canonical Correlation Analysis (SVCCA; Raghu et al., 2017) uses

the representation matrices produced by each layer of a model as inputs to CCA, but

adds an extra SVD step before CCA to denoise the representations before finding their

similarity. This rank reduction is performed by factorizing each representation matrix

and then setting the smallest singular values to 0, constructing the new representation

matrices as the product of the modified factors. SVCCA is a key component of the

probing method in Chapter 4. Projection Weighted CCA (PWCCA; Morcos et al.,

2018a) and Centered Kernel Alignment (CKA; Kornblith et al., 2019) propose other

methods of adapting CCA to the noisy representations produced by neural networks.

In addition to the use of SVCCA in Chapter 4, these correlational subspace methods

continue to see use in interpretability work (Voita et al., 2019a; Wu et al., 2020a; Hao

et al., 2020).

2.4.2.2 Representational Similarity Analysis (RSA)

RSA is another common way of evaluating the similarity of two views of the same data.

NLP researchers borrowed this method from systems neuroscience (Kriegeskorte et al.,

2008) in order to analyze neural networks (Chrupala and Alishahi, 2019; Chrupala,

2019; Lepori and McCoy, 2020). In this method, the two views are in the form of

two kernels, or similarity functions. By using kernels, we don’t need to have to use

vector representations for both views of the data. For example, you may have on one

side a tree kernel that considers proximity on a syntax (as the edge distance above

from Hewitt and Liang (2019)). As the other kernel view, you use cosine similarity

or some other vector operation comparing the representations produced by a neural

network. RSA similiarity is then the Spearman correlation between these kernels,

which is the Pearson correlation (Formula 2.5) between the rank of distances in the

kernels. Using rank in this way has the advantage of eliminating scaling as a factor;

e.g., if we compared similarity function k(x) to log(k(x)), Spearman would recognize

them as perfectly correlated.

2.4.2.3 Comparison

Wu et al. (2020a) performed an analysis of different measurements of similarity, re-

vealing differences between both interpretation methods and the models they were ap-

plied to. They confirmed that models with different architectures (RNN- and Transformer-
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based models), trained on the same task, produced similar representations according

to similarity metrics that considered dimensions that were distributed across neurons

(SVCCA, PWCCA, and CKA). In contrast, they found that metrics based on the di-

rections of individual neurons did not detect these similarities, supporting the claim in

Morcos et al. (2018b) that features are encoded in directions that span many neurons4.

Implicit in Chapter 4 is the assumption that models trained on the same tasks should

produce similar representations. Wu et al. (2020a) not only confirmed this expecta-

tion with respect to the SVCCA metric, but also showed that models within the same

family are more similar. This last finding further validated similarity analysis as a way

of investigating whether particular modules play similar roles within their respective

networks.

2.4.3 Word Importance

Early efforts to assign weights to words and phrases in contextual models borrowed

saliency methods from computer vision (Simonyan et al., 2014)5. These techniques

base importance on the magnitude of activation vectors (Karpathy et al., 2015) and

gradients (Li et al., 2015). In language, it is also possible to directly test importance

by removing words (Arras et al., 2016; Li et al., 2016), but such methods neglect the

sequential interactions and instead treat sentences inappropriately as bags-of-words, as

argued by Feng et al. (2018).

2.4.3.1 Attention distributions

Attention modules reweight different features, often words, before adding together

the vectors associated with each feature. One of its most common applications is

in sequence-to-sequence (seq2seq) tasks, where the Transformer model dominates

leaderboards by relying entirely on attention modules (Vaswani et al., 2017). The

Transformer architecture applied to a sequence of length n includes three learned com-

ponents: a query Q∈Rm, a key K∈Rn, and a value V∈Rn. The query is a compressed

representation of previous output, and the key-value pairs encode the set of inputs. The

attention itself is then computed as:

4However, Wu et al. (2020a) did find that individual neurons were similar in models from the same
model family; for example, LSTMs had neuron-level representations that were similar to other LSTMs.

5New analytic work in machine learning tends to appear in computer vision first, which is why most
of the work in Chapter 3 focuses on that domain.
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Figure 2.2: Multi-head attention (with different colors representing different heads) in

predicting “making”, from Vaswani et al. (2017). Strong weights are placed on “more

difficult”, a phrase directly syntactically linked to “making”.

Attention(Q,K,V) = Softmax
(

QKT
√

n

)
V (2.12)

The weight distribution produced by the softmax function has an implicit interpretation

as “relevance”, strengthening connections between words in a way that draws tempting

parallels to latent graph structures in language, like syntactic dependency (Clark et al.,

2019; Voita et al., 2019b; Htut et al., 2019) or constituency (Marecek and Rosa, 2019).

This relevance interpretation is seen clearly in Figure 2.2, where a close syntactic link

in the stereotyped expression “make noun more adjective” is highlighted by the atten-

tion distribution. Such methods are convenient but usually limited to attention-based

models6.

In settings where we have only one attention distribution when labeling each word, we

can ask whether the attention distribution points to, e.g., a parent word or coreferent, as

in the making-more link in Figure 2.2. In architectures with multi-head self-attention,

multiple attention distributions operate at each layer, so we can no longer point to a

single dominant word in a single distribution (Limisiewicz and Marecek, 2020). In-

stead, a common way to measure the syntacticity of the attention distributions is to

6Attention can sometimes be added as a peripheral inactive module for interpretation purposes (Go-
dard et al., 2018).
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count the performance of the “best” head for a particular relation or instance of the re-

lation (Voita et al., 2019b; Clark et al., 2019). This strategy considers a particular head

to be best for a relation like subject-verb, that focuses on a different head in calculating

syntacticity when a different relation appears, such as object-verb.

In general, the topmost encoder layers of machine translation (MT) models and the

middle layers in Transformer-based LMs like BERT (Devlin et al., 2019) and GPT-

2 (Radford et al., 2019) align with syntactic intuition (Limisiewicz and Marecek,

2020).

2.4.3.1.1 Is attention interpretable? Debate rages over whether attention can be

interpreted as word importance in this way (Jain and Wallace, 2019; Serrano and Smith,

2019; Wiegreffe and Pinter, 2019; Vashishth et al., 2019; Brunner et al., 2020), not least

because of their limited capabilities on long sequences (Hahn, 2020; Brunner et al.,

2020) and the availability of model-agnostic alternatives like saliency (Bastings and

Filippova, 2020). Regardless of their faithfulness and validity, attention-based analyses

of structure are simple to implement and often align with intuition in their results. Even

in theory, key-value pairs may mutually amplify each other during training (Lu et al.,

2021), so we can generally gain some intuition about the internal workings of attention

models by observing their weight. Attention-based interpretation methods therefore

continue to be in common use today (Belinkov and Glass, 2019; Rogers et al., 2020),

and observations of attention distributions during training could help extend much of

the work in this thesis to modern attentional models.

2.4.4 Contextual Decomposition

If we want to consider not just the importance of each word in a sequence, but the

causal contribution that entire sets of words make towards a model’s output vector, we

can use Contextual Decomposition (CD), proposed by Murdoch et al. (2018). CD

is a way of approximating these influences in an LSTM without adding an attention

mechanism or training an additional model (as in DCs).

In the language of CD, we consider the hidden and output vectors produced by an

LSTM module to be the sum of relevant and irrelevant parts, the contributions re-

spectively of the in-focus and out-of-focus words in a sequence. For example, we

might decompose the hidden layer into contributions of the relevant word set β and the

irrelevant word set β̄, producing:
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h = ht
β
+ht

β̄
(2.13)

This is not a trivial decomposition, because the LSTM module applies nonlinearities at

each gate, the sigmoid and tanh functions, as shown in Section 2.1. CD therefore finds

an approximate decomposition of the hidden state by linearizing each gate operation.

For example, Murdoch et al. (2018) use a linearized approximation Lσ for σ (and sim-

ilarly a linearized approximation Ltanh for tanh) such that for arbitrary input ∑
N
j=1 y j:

σ

(
N

∑
j=1

y j

)
=

N

∑
j=1

Lσ(y j) (2.14)

These approximations are then used to split each gate into components contributed by

the previous hidden state ht−1 and by the current input xt , for example the input gate

it :
it = σ(Wixt +Vtht−1 +bi)

≈ Lσ(Wixt)+Lσ(Vtht−1)+Lσ(bi)
(2.15)

The linear form Lσ is achieved by computing the Shapley value (Shapley, 1953) of

its parameter, defined as the average difference resulting from excluding the parame-

ter, over all possible permutations of the input summants. To apply Formula 2.14 to

σ(y1 + y2) for a linear approximation of the isolated effect of the summant y1:

Lσ(y1) =
1
2
[(σ(y1)−σ(0))+(σ(y2 + y1)−σ(y1))] (2.16)

With this function, we can take a hidden state from the previous timestep, decomposed

as ht−1 ≈ ht−1
β

+ht−1
β̄

and add xt to the appropriate component. For example, if xt is in

focus, we count it in the relevant function inputs when computing the input gate:

it = σ(Wixt +Vtht−1 +bi)

≈ σ(Wixt +Vt(ht−1
β

+ht−1
β̄

)+bi)

≈ [Lσ(Wixt +Vtht−1
β

)+Lσ(bi)]

+Lσ(Vtht−1
β̄

)

= it
β
+ it

β̄
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This provides an expression of the approximate input gate as the sum of relevant and

irrelevant components. By ignoring the irrelevant components while computing the

module output ht , we produce ht
β
. Thus we linearize and isolate the effect of β.

In order to isolate ht
β

from the context, the irrelevant component contains all nonlin-

ear interactions between in-focus and out-of-focus words. We extend CD to analyze

these interactions between words in Chapter 5, leading to a new perspective on how an

LSTM constructs meaning over the course of training.

Although CD is particular to the LSTM architecture, the principle behind it is that

of the Shapley decomposition, which is general across architectures. Therefore, this

generalization of word importance has parallels in other architectures. Shapley values

have been used to understand the contribution of entire sets of words over an entire

activation vector in many environments Lundberg and Lee (2017); Chen et al. (2019);

Ghorbani and Zou (2020); Zhang and Nie (2020). The existence of such work suggests

possible generalizations of any research based on CD to other architectures.

2.5 The Perils of Creationism

For centuries, Europeans agreed that the presence of a cuckoo egg was a great honor to

a nesting bird, as it granted an opportunity to exhibit Christian hospitality. The devout

bird enthusiastically fed her holy guest, even more so than she would her own (evicted)

chicks (Davies, 2015). In 1859, Charles Darwin’s studies of another occasional brood

parasite, finches, called into question any rosy, cooperative view of bird behavior (Dar-

win, 1859). Without considering the evolution of the cuckoo’s role, it would have been

difficult to recognize the nesting bird not as a gracious host to the cuckoo chick, but as

an unfortunate dupe.

Whether looking at parasitic brooding behavior or at the inner representations of a neu-

ral network, if we do not consider how a system develops, it is difficult to distinguish

a pleasing story from a useful analysis. In NLP, how can we know if a pattern emerges

as informative structure which is used by the model? Apparent syntactic patterns may

well be vestigial effects from strategies early in training,7 or even side effects of train-

ing, input structure encodings with no bearing on the final predictions. We consider

similarity (Chapter 4) and sparsity (Chapter 6) not at one checkpoint, but throughout

training. We even illustrate how an LSTM’s training strategy makes it well-suited to
7For one origin story, see the Information Bottleneck Hypothesis, Section 3.1.2.
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hierarchical structured data (Chapter 5). These analyses lend a dimension to our under-

standing that is missing from the "creationist" view of a single checkpoint, manifested

without history or evolution.



Chapter 3

Background: Training Dynamics

The most important reason for going from one place to another is

to see what’s in between, and they took great pleasure in doing

just that. Then one day someone discovered that if you walked as

fast as possible and looked at nothing but your shoes you would

arrive at your destination much more quickly.

Norton Juster, The Phantom Tollbooth

The work in this thesis focuses on interpreting the development of linguistic structure

over the course of training a language model. It therefore appears at the intersection

of two fields: the first being language model interpretability (Chapter 2), the second

training dynamics. The field of training dynamics focuses on understanding how the

strategies used in training neural networks actually work in practice.

One example of training dynamics research is the thread of work which describes

how a model becomes more complex throughout training. This complexity may be

measured according to how easy it is to find adversarial examples; early in training, an

image classifier can be easily tricked with slightly perturbed data (Arpit et al., 2017).

Another way of measuring the same phenomenon is by comparing the classification

accuracy on various samples between a state-of-the-art image classifier and a shallow

model; the deep network behaves remarkably like classical shallow models earlier in

training (Mangalam and Prabhu, 2019).

So now we know that, by observing the networks throughout training, we can conclude

that deep networks evolve from modeling shallow patterns. An understanding of the

training process requires a mix of empirical investigations like this as well as more

28
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theoretical work. This chapter will focus on the research in training dynamics that we

draw on, either in methodology or in formulating hypotheses about language model

behavior during training.

The difficulty, as well as the opportunity, of working with training dynamics in NLP is

that the extensive research done on understanding and modeling training dynamics is

almost exclusively focused on the computer vision domain. Computer vision uses con-

tinuous data as input, and currently tends to investigate the dynamics of feedforward

networks, convolutional networks, and residual networks. We have little information

on the dynamics of RNNs and Transformers, which are common in NLP—or on how

dynamics will differ when the input data takes the form of simplistic discrete sequences

with latent tree structures, let alone the fuzzy, complex structure of actual language.

Before considering this research gap, in this chapter we will overview some of the

existing understanding of training dynamics in neural networks. The work we dis-

cuss is often based on experimental research in computer vision, or on synthetic tasks

developed by computer vision researchers. Many of the experiments are based on

perturbations or measurements with no obvious parallel in NLP.

In language, meanwhile, an entire field of linguistics is dedicated to observing ideal

learners in action: human children. Developmental linguistics has a long history of

investigating language learning through probing the emergence of structure, but these

patterns may not be observed in neural networks. For example, a classic pattern ob-

served over the time course of human learning is the “U-shaped curve” (Plunkett and

Marchman, 1991). In early childhood, a learner memorizes verb forms, both regu-

lar verbs like “walk” inflecting as “walked” and irregular verbs like “run” inflecting

as “ran”. Later on, the child learns a general inflection rule, so instead of using the

memorized forms, they are likely to say words like “runned”. In order to speak gram-

matically like an adult, the child has to memorize the exceptions to these rules again.

Kirov and Cotterell (2018) claimed to observe classic U-shaped curves in a network

learning irregular verbs, but Corkery et al. (2019) found it to be an anomaly among

model runs. It is rare to see such a debate on whether modern neural networks use

humanlike strategies in learning language—or any recent investigation into the learn-

ing strategies of language technologies. We see this gap as an opportunity, a space

flourishing with questions about how the structure and representation of data influence

model training.
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Whether or not an artificial neural network experiences the memorization to overgen-

eralization to correction transitions indicated by a human learner’s U-shaped curve,

there are many indications that it undergoes its own phase transitions during training

(Section 3.1). Furthermore, theoretical work on the trajectories followed by gradients

can shed light on how underlying data ontologies can make one architecture more suit-

able than another (Section 3.2). And where theory fails, we can turn to a variety of

empirical methods for understanding the training process (Section 3.3). The existing

work in training dynamics provides both questions about how language models learn,

and methods for finding solutions.

3.1 Learning in phases

Practitioners in machine learning have found that switching optimization strategies

early in training can be more effective or efficient; understanding these shifts, as well

as other “natural” changes in a model’s learning strategy, is a fundamental problem in

training dynamics. For example, BERT’s training regime switches one hyperparame-

ter, batch size, dramatically midway (Devlin et al., 2019). Although smaller incremen-

tal changes in step size have long been in practice1, the advantage of large modification

of other hyperparameters during training (Lee et al., 2020; Popel and Bojar, 2018; Bo-

goychev et al., 2018) may be linked to recent evidence that training naturally occurs

in multiple phases (Jastrzebski et al., 2020; Shwartz-Ziv and Tishby, 2017; Kaplan

et al., 2020). A phase-based analysis of learning takes the view that the early stages

of learning have distinct behavior and purpose compared to later stages. These phase

transitions emerge in a number of settings and using various methods of modeling the

learning process.

Phase transitions mark changes in how model generalization or strategies respond to

how much training data a language model has consumed. Kaplan et al. (2020) studied

both LSTM and Transformer language models and found that loss scales as a power

law in response to dataset size and amount of total training time, with plateaus at the

beginning and end of training, shown in Figure 3.1. At the end of training, this plateau

in performance occurrs significantly before model convergence, indicating that training

until convergence is inefficient if the only goal is language modeling. However, mod-

ern language model training is often aimed at pretraining a model for a different task,

1More rarely, other hyperparameters can receive similar treatment of incremental changes, as in
curriculum dropout (Morerio et al., 2017).
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Figure 3.1: Various sizes of LM each show that loss scales as a power law in terms of

both training time and data size, though with a lag at the beginning and saturation at

the end. Reprinted from Kaplan et al. (2020).

and training beyond apparent convergence seems to improve transfer performance, a

source of some of the improvement RoBERTa (Liu et al., 2019b), one large Trans-

former language model, saw over the previous state-of-the-art, BERT (Devlin et al.,

2019). Phase transitions appear across many models and domains; Jastrzebski et al.

(2020) identified points in training, conditioned on early stage step size, after which

SGD acts as an implicit regularizer for both gradient curvature and data noise. They

identified these break-even points in vision, medical, and NLP tasks.

Linguistic structure emerges slowly Kaplan et al. (2020) found that test error on

a language modeling objective was strongly correlated with training error throughout

training. However, Warstadt et al. (2020) found a threshold in training data size that

allows RoBERTa to prefer underlying linguistic structure over surface features when

fine-tuned on various tasks. That is, the model continues to encode linguistic prop-

erties in useful ways late in training. As one example of a linguistic task, they pose

a morphological binary classification task, asking whether the main verb ends in “-

ing”. Efficiently solving this problem with word-level embeddings requires clustering

on the basis of inflection, because the model does not have direct access to the charac-

ter sequence that encodes “-ing” as a surface feature. However, some of the training

examples could also be classified by asking a word-level, and therefore surface-level,

question: Does the sentence contain the word “the”, as in, “The great philosopher is

questioning Diogenes”? This creates an ambiguous portion of the training set. By

monitoring how much unambiguous training examples the model needs in order to
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Figure 3.2: Reprinted from Hirsch and Spinelli (1971), a kitten wearing goggles to limit

their vision. As an adult cat, their vision will remain adapted to the obstructed view

offered by the goggles.

learn the underlying morphological property, instead of the surface property, Warstadt

et al. (2020) found that RoBERTa began to prefer such linguistic properties only af-

ter consuming large amounts of data, between 1B and 30B words. This transition to

a preference for linguistic properties may constitute one phase transition particular to

language models.

3.1.1 Critical Learning Periods

Other phase transitions have been observed only in computer vision. Achille et al.

(2019) discovered a substantial limitation of neural networks when confronted with

perturbed training data: They could not recover from an early training stage if they

blurred the original input images. Instead, the models continued to make accurate

predictions on blurred images and failing at the original sharper images, even after

converging while training on the original image corpus. They connected this tendency

to animal critical learning periods, the phenomenon that limits brain plasticity when

responding to a change in environment after early development. Classic work in under-

standing animal critical learning periods relies on manipulating the senses of growing

cats (Wiesel and Hubel, 1963; Hirsch and Spinelli, 1971). Kittens, raised from infancy

with goggles that limit their view (Figure 3.2), adapt to this environment and never ac-
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quire normal visual capacity. Manipulations like this are effective only during early

development, so an adult cat will not lose normal vision by wearing the goggles.

Particular critical learning periods are yet undiscovered in NLP models. NLP tends

to focus on the related question of what properties are useful or transferred from pre-

trained models before fine-tuning (Papadimitriou and Jurafsky, 2020; Warstadt et al.,

2020). For instance, it seems the very existence of matching parentheses—even with-

out consistently nesting them—is useful information for an LSTM to base an English

LM on (Papadimitriou and Jurafsky, 2020), telling us that the LSTM module is used

to keep track of individual pairs of associated words.

3.1.2 Information Bottleneck Hypothesis

(Achille et al., 2019) found that critical learning periods (Section 3.1.1) aligned during

training with a transition from input memorization to input forgetting. This pattern of

phase transition during training was first documented by Tishby and Zaslavsky (2015).

They based their work on concepts from information theory, and in particular on mu-
tual information. Mutual information is a measurement of the dependence between

two variables A and B, expressed as:

I(A;B) = DKL[p(A,B)‖p(A)p(B)] (3.1)

This is the KL-divergence between the joint distribution of A and B and their indepen-

dent distributions.

Their proposal was not unlike the U-shaped curve: in the early stages of training (the

empirical risk minimization (ERM) stage), a neural network naturally memorizes its

inputs because its tendency is to maximize mutual information between the input and

the internal representation. It then reaches the representation compression or forget-
ting stage, wherein it minimizes mutual information between the input and the internal

representation–while maintaining as much information as possible about the output.

Like in a human learner’s U-shaped curve, the network experiences a memorization

phase followed by learning a simpler, and therefore more general, shortcut. Tishby

and Zaslavsky (2015) further propose that fully optimized neural nets would approach

the Information Bottleneck (IB) bound (Tishby et al., 2000), where the representa-

tion compression stage reaches the optimum selecting intermediate representations T

between the input X and output Y such that

T̂ = min
T

I(X ;T ) s.t. I(T ;Y ) = η (3.2)
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Figure 3.3: Reprinted from Shwartz-Ziv and Tishby (2017), an information plane analy-

sis of representations T of a neural network case study. From right to left, plots are of

mutual information at initialization, 400 epochs, and 9000 epochs. Colors specify the

layer. During training, each layer first increases input information I(X ;T ), then reduces

it while maintaining maximum I(Y ;T ) information retained by the layer about the output

label.

minimizing information flow from X to T while maintaining a constant information η

passed from T to Y .

Shwartz-Ziv and Tishby (2017) illustrated the two optimization stages on the infor-
mation plane (Figure 3.3). The information plane covers two dimensions, I(X ;T ) and

I(T ;Y ). During SGD, they found that I(X ;T (i)) and I(T (i);Y ) both increased at layer i

until I(T (i);Y ) reached its maximum, at which point I(X ;T (i)) began to decrease.

While Shwartz-Ziv and Tishby (2017) used a synthetic task and toy model to demon-

strate the information bottleneck hypothesis of training stages, Voita et al. (2019a)

applied the information bottleneck principle to the layer-wise development of repre-

sentations in a Transformer Masked Language Model. Using variations on CCA (see

Section 3.3.2), they illustrated how lower layers have high similarity with both input

and output data, while similarity to the input is reduced gradually as higher represen-

tations grow closer to the output layer.

3.1.2.1 Controversy

Shwartz-Ziv and Tishby (2017) selected a simplistic setting with a toy task in order to

simplify the process of deriving mutual information. Theoretically, mutual information
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is a claim about what information is transmitted when considering all possible mod-

els to translate between input and output distributions, making it an intractable metric.

Instead of measuring true MI, Shwartz-Ziv and Tishby (2017) discretized the units pro-

duced by each layer’s arctan activation by binning them, thereby creating distributions

which could be compared directly by KL-divergence.

Saxe et al. (2018) challenged the general applicability of the IB results. Their analyses

and simulations found that this two-stage learning process, and its effects on general-

ization, were only found in the arctan activation setting. Simple linear networks and

more common ReLU activations did not follow the same pattern. Saxe et al. (2018)

found that the IB findings applied only when an activation function was saturated (i.e.,

exhibited asymptotic behavior) on both sides, unlike popular activations which satu-

rated only at low values (e.g., ReLUs).

Rather than settling the case of whether the IB hypothesis applies in most learning

settings, these results ignited a debate. Noshad et al. (2019) attributed the negative

findings in the ReLU case to poor MI estimation methods, proposing the EDGE MI

estimation method and using it to demonstrate a compression phase as predicted by

Tishby and Zaslavsky (2015). Goldfeld et al. (2019) then validated the IB hypothesis

in a variety of networks using another framework and estimator. While the information

plane analysis Shwartz-Ziv and Tishby (2017) employed has found popularity in anal-

ysis of learning dynamics (Lanorte et al., 2014; Wickstrøm et al., 2019; Cheng et al.,

2018), the ML community have not settled on the universality of the IB hypothesis.

In Chapters 4 and 6, we find shifts in behavior over the course of LM training that we

view as phase transitions. These transitions can be read as further evidence of the IB

hypothesis, as we comment on in the papers.

3.2 Gradient Trajectories and Underlying Semantics

Thus far, the rules of dynamics we have discussed are presented as largely model- and

data-agnostic2. But we must not leave the impression that the field of training dynamics

neglects these elements. In reality, the particulars of the data have a profound effect on

learning. Swayamdipta et al. (2020) empirically demonstrated the influence of data by

visually mapping individual training samples according to their impact on a model’s

2While critical learning periods are detected through data manipulation, the nature of the data is not
a central focus of Achille et al. (2019).
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Figure 3.4: Reprinted from Saxe et al. (2019), (A) A multidimensional scaling (MDS)

visualization of internal representations from a nonlinear NN, from Rogers and Mc-

Clelland (2004) (B) Analytically derived MDS visualization of a tree-derived ontology

according to Saxe et al. (2019).

correctness, confidence, and variability. They found that the most ambiguous (high-

variability) samples were essential to out-of-domain generalization, and emphasized

the importance of data curation.

We can view the effect of data structure more generally by considering idealized data

sources. Saxe et al. (2019) proved and simulated the dynamics of a linear neural net-

work trained to predict the features of types which are generated by a tree-based on-

tology. For example, the ontology might include a daisy as a type of flower, which is

a category of plants, with properties like “has leaves” and “does not move”. Penguins

would be generated as a type of birds, which are a category of animals, but unusually

among birds would have features like “does not fly” and “swims”. Saxe et al. (2019)

found that in a two layer neural network, animals and plants would be clustered alto-

gether at the beginning, and gradually differentiated into their child categories like bird

and tree, so that differentiation over the course of training followed the same structure

as the tree ontology (see Figure 3.4).

Saxe et al. (2019) also proved that the addition of an extra layer to a one-layer linear

network, turning it into in a two-layer linear network, would accelerate the trajectory

of gradient descent in the dominant directions of the data. In this case, the dominant

directions would identify boundaries close to the “root” of the ontological tree, like

the plant/animal split in Figure 3.4. This modification does not affect which models
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could hypothetically be learned, because a one-layer linear neural network covers the

same function space as a two-layer linear neural network. However, it influences the

weights learned by gradient descent. In practice, this tendency would decrease the

noise from aberrational types like the penguin, emphasizing the clearest directions.

This result about the impact of adding layers to a linear network was thematically

extended by Arora et al. (2019), who found that performing matrix decomposition with

deeper linear networks would provide natural regularization, because the trajectories

in gradient descent increasingly neglected the least significant or “noisiest” direction

as model depth grew.

Saxe et al. (2019) and Arora et al. (2019) highlight how understanding training dy-

namics helps identify the inductive biases that make one architecture well-adapted to

a particular data source or underlying structure. This work is a significant inspira-

tion for Chapter 5, where we investigate how hierarchically generated sequences—like

idealized language generated at the leaves of a syntax tree—lend themselves to the

LSTM model. By looking at the model during training, we see how its representations

repeatedly merge, forming larger trees out of small constituents.

3.3 Exploring the Course of Training

We have discussed a variety of theories and results, but what if we want to empirically

investigate the learning dynamics of an arbitrary neural network? In this case, we may

need more practical tools.

3.3.1 Loss Visualization

When a human investigates a neural network’s representations, we often project these

representations onto a 2-, or possibly 3-dimensional image. A similar option is avail-

able when looking at training, where we can view the loss landscape of the model by

modeling the change in the loss function outside of the immediate gradient. A simplis-

tic method of deriving a loss landscape is by Linear Interpolation (Goodfellow et al.,

2015), wherein one chooses two parameter settings as the vectors θ and θ′ and then

plots each point between them, sampling at some interval (Figure 3.5). The function

plotted to visualize loss function L is f (α) = L((1−α)θ+αθ′), sampling at various

test points α. Among other problems, this technique is unreliable when modeling non-

convexities.
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Figure 3.5: Linear interpolation of the loss on an LSTM trained on PTB, reprinted from

Goodfellow et al. (2015).

Figure 3.6: 3-dimensional loss landscape for ResNet-56 with skip connections,

reprinted from Li et al. (2018).

To improve on linear interpolation, Li et al. (2018) and Goodfellow et al. (2015) use

random directions to add test points to θ. In this case, they choose the random di-

rection δ and plot f (α) = L(θ+αδ). Unlike Linear Interpolation, random directions

can generate 2- or 3-dimensional contour plots by selecting other random directions

in addition to δ and making f a multivariate function. Using these methods, Li et al.

(2018) showed that SGD optimization trajectories occupy an extremely low dimen-

sional space, defined by large nearly-convex regions in the loss landscape (Figure 3.6).

This near-convexity may characterize the “good” optima which generalize well.

Loss landscape methods visualize changes in error based on changes in parameter

settings, but by varying parameters along only one or two dimensions, they cannot

provide interpretable information about individual neurons or even units. To study

the contributions of parameters on a granular level, we might turn to Loss Change
Allocation (LCA; Section 6.1.1.1). On the other hand, if we wish to abstract away the

role of each individual neuron entirely and observe only changes in the subspaces they
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produce, we can analyze representational similarity, as follows.

3.3.2 Similarity Analysis

Raghu et al. (2017) originally devised SVCCA (Section 2.4.2) in order to observe

the movements of neural networks during training. By visualizing the convergence

of neural networks using linear projection methods, they illustrated neural networks

learning naturally from the bottom up. They also measured when different classes

were learned, by using CCA on the Discrete Fourier Transform between various layers

and the logits; for example, ImageNet (Russakovsky et al., 2015) Resnet (He et al.,

2016) distinguishes firetrucks from dogs before it learns to distinguish different dog

breeds.

Morcos et al. (2018a) followed these results using PWCCA to analyze RNNs. Again,

they observed that lower layers converged faster than upper layers in multilayer RNNs.

They discovered the hidden state is highly variable even through this lens, indicating

new words in a sequence are not just applying linear transformations to the state. This

last observation is highly relevant to our use of approximations to measure the nonlin-

earity of transformations applied by various words in Chapter 5.

3.4 The Perils of Mono-Domainism

We know little about how language models learn, in part because consideration of NLP

as a domain is historically rare in venues that publish most training dynamics research,

or analytic work in learning theory. A current search3 of ICML 2020 publications

returned 169 papers with citations to “Association for Computational Linguistics” or

“ACL”, even including citations to many potential sister conferences: NAACL, AACL,

or EACL. A search for citations to a single vision conference, “Computer Vision and

Pattern Recognition” or “CVPR”, turned up 541 papers. In COLT publications since

2017, the same searches turned up 13 and 23 papers, respectively. In ICML 2020,

Wikitext-* or PTB references found only 16 results, while the most popular small

corpus for image classification, MNIST, found 264 ICML publications4.

3Searches were performed with Google Scholar.
4*CL venues have also become distanced from work in computational linguistics (Reiter, 2007),

leaving NLP as a field deprived of new scientific work in its data domain as well as new scientific work
in its methodologies.
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Morcos et al. (2018a) and Raghu et al. (2017) both investigate LSTM behavior, but

only tangentially. Raghu et al. (2017) include a plot of PTB (Mikolov et al., 2013b)

experiments in an appendix. Morcos et al. (2018a) briefly validate one of their CNN

findings with PTB as well as Wikitext-2 (Merity et al., 2017); the NLP equivalent of

using the miniscule MNIST (LeCun and Cortes, 2005) dataset in vision. All citations

to training dynamics work before 2020 in this chapter focus primarily on CV or image

processing tasks.

Linguistics provides us with the salient concept of markedness (Andersen, 1989).

In language, some forms of a word are the default form, while others are explicitly

marked by some additional inflection. An example would be contrast between the word

“marked”, which is an unmarked form compared to “unmarked”, which is marked

by the prefix “un-”. In machine learning, we might call CV an unmarked domain

by convention, in contrast to the marked NLP. This convention means that certain

tasks and architectures are considered the default environments to understand. Such

a convention privileges understanding continuous data over discrete; ConvNets over

LSTMs; ResNets over Transformers; geometric tasks over structured prediction.

Understanding one machine learning domain will always extend analysis of others.

Latent tree structure is inherent to both domains, but in CV, it is obscured by the image

data from which we must compose eyes and mouth into a face—and subsequently,

body and face into a cow (Vedaldi et al., 2014). Image classification is a language

task, because it is our language that provides the intuitions which we use to construct

ontologies that turn into image classes; English does not provide us with common

distinctions for different packs of wolves, but it names every dog breed, and so the

image labels are chosen according to available terminology. The “default” domain

of CV has any number of idiosyncrasies on which to overfit in our understanding of

statistical modeling. CV provides us with many interesting geometric phenomena, but

the underlying structure of language without the added noisy channel of an image can

provide a clear and simple domain worth analyzing, as well. A true understanding

of statistical models must be a multi-domain understanding, not a mono-domain view

focused on one task and its peculiarities.

In order to understand the LSTM architecture better, in this dissertation, we study its

behavior on language. We take advantage of the availability of tags for individual

words by using them as alternative tasks, finding that LSTMs quickly learn generic

input representations and later specialize them to the task at hand (Chapter 4). By
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identifying a metric that indicates strong edges within a latent tree structure, we can

study how the LSTM prefers language-like tree structures in its representations (Chap-

ter 5). Finally, we use POS tags as a proxy for how predictable a word’s behavior

is, allowing us to confirm that more predictable words focus on just a few neurons,

rather than distributing their gradient (Chapter 6). All of this work takes advantage

of well-understood properties of language in order to better understand how an LSTM

responds to structured data.



Chapter 4

Beyond Diagnostic Classifiers:

Probing Language Model Similarity

Just as they suspected, the other side of the house looked the

same as the front, the back, and the side, and the door was again

answered by a man who looked precisely like the other three.

Norton Juster, The Phantom Tollbooth

In this chapter, we present the first work focused on training dynamics of modern neu-

ral language models. In order to understand how a language model learns underlying

properties, such as POS and topic, over the course of training, we first experiment

with diagnostic classifiers, a standard probing method. Finding these methods to be

insufficiently sensitive to subtle changes in representations over the course of training,

we instead introduce a method based on model similarity (Section 2.4.2), comparing

the representations produced by language models and models targeting the underlying

properties1.

Using Singular Vector Canonical Correlation Analysis (SVCCA), we compare the sim-

ilarity of language models (word predictors) with tag predictors at various stages of

training. This analysis presents several additional advantages over contemporary prob-

ing methods. Training is far more efficient, because it consists only of matrix factor-

ization, rather than training separate neural networks. Furthermore, we do not require

parallel annotated data for evaluation, as we are interested only in the internal repre-

sentations, and not in the performance, of these tag predictors.

1We like to call this method the Similarity Probe for Intrinsic Linguistic Labels (SPILL).
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This strategy yields a variety of informative results about the training process of the

language model. We find that coarse POS is learned first, and topic information is

learned last, with fine-grained POS and semantic information learned in between.

Early in training, models targeting different tasks (i.e., language modeling or tag pre-

diction) with the same inputs tend to produce similar representations, and then special-

ize to their tasks.

We also see that different layers exhibit different behavior: recurrent layer representa-

tions become more task-agnostic in late training, but embedding layers become more

specialized to their task later in training. However, embedding layers nonetheless re-

main very generic throughout training when compared to the task-specific recurrent

layers. The task-generality of embeddings may explain the effectiveness of pretrained

embeddings to initialize representations for other tasks, as a task-agnostic embedding

may be used transferred more easily to another environment while upper-level embed-

dings require more fine-tuning (Howard and Ruder, 2018).

By investigating the language model over the full course of its training, we have a better

view of how different layers specialize and the degree to which particular language

properties and general input structure shapes representations.

Publication Status This work was published in NAACL 2019.
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Abstract

Research has shown that neural models im-
plicitly encode linguistic features, but there
has been no research showing how these en-
codings arise as the models are trained. We
present the first study on the learning dy-
namics of neural language models, using a
simple and flexible analysis method called
Singular Vector Canonical Correlation Anal-
ysis (SVCCA), which enables us to compare
learned representations across time and across
models, without the need to evaluate directly
on annotated data. We probe the evolution of
syntactic, semantic, and topic representations
and find that part-of-speech is learned earlier
than topic; that recurrent layers become more
similar to those of a tagger during training;
and embedding layers less similar. Our results
and methods could inform better learning al-
gorithms for NLP models, possibly to incor-
porate linguistic information more effectively.

1 Introduction

Large neural networks have a notorious capacity
to memorize training data (Zhang et al., 2016),
but their high accuracy on many NLP tasks shows
that they nonetheless generalize. One apparent ex-
planation for their performance is that they learn
linguistic generalizations even without explicit su-
pervision for those generalizations—for example,
that subject and verb number agree in English
(Linzen et al., 2016); that derivational suffixes at-
tach to only specific parts of speech (Kementched-
jhieva and Lopez, 2018); and that short segments
of speech form natural clusters corresponding to
phonemes (Alishahi et al., 2017). These studies
tell us that neural models learn to implicitly rep-
resent linguistic categories and their interactions.
But how do they learn these representations?

One clue comes from the inspection of multi-
layer models, which seem to encode lexical cate-

gories in lower layers, and more contextual cate-
gories in higher layers. For example, Blevins et al.
(2018) found that a word’s part of speech (POS) is
encoded by lower layers, and the POS of its syn-
tactic parent is encoded by higher layers; while
Belinkov et al. (2018) found that POS is encoded
by lower layers and semantic category is encoded
by higher layers. More generally, the most useful
layer for an arbitrary NLP task seems to depend on
how “high-level” the task is (Peters et al., 2018).
Since we know that lower layers in a multi-layer
model converge to their final representations more
quickly than higher layers (Raghu et al., 2017), it
is likely that models learn local lexical categories
like POS earlier than they learn higher-level lin-
guistic categories like semantic class.

How and when do neural representations come
to encode specific linguistic categories? Answers
could explain why neural models work and help us
improve learning algorithms. We investigate how
representations of linguistic structure are learned
over time in neural language models (LMs), which
are central to NLP: on their own, they are used
to produce contextual representations of words for
many tasks (e.g. Peters et al., 2018); while con-
ditional LMs power machine translation, speech
recognition, and dialogue systems. We use a sim-
ple and flexible method, Singular Vector Canon-
ical Correlation Analysis (SVCCA; Raghu et al.,
2017), which allows us to compare representa-
tions from our LM at each epoch of training with
representations of other models trained to predict
specific linguistic categories. We discover that
lower layers initially discover features shared by
all predictive models, but lose these features as the
LM explores more specific clusters. We demon-
strate that different aspects of linguistic structure
are learned at different rates within a single recur-
rent layer, acquiring POS tags early but continuing
to learn global topic information later in training.
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2 Methods

Our experiments require a LM, tagging models,
and a method to inspect the models: SVCCA.

2.1 Language model

Formally, we will model the probability distribu-
tion over a sequence of tokens x1 . . . x|x| with a
conventional two-layer LSTM LM. The pipeline
from input xt at time step t to a distribution over
xt+1 is described in Formulae (1)–(4). At time
step t, input word xt is embedded as (1) het , which
is input to a two-layer LSTM, producing outputs
(2) h1t and (3) h2t at these layers, along with cell
states c1t and c2t . A softmax layer converts h2t to a
distribution from which (4) xt+1 is sampled.

het = embedding(xt) (1)

h1t , c
1
t = LSTM1(h

e
t , h

1
t−1, c

1
t−1) (2)

h2t , c
2
t = LSTM2(h

1
t , h

2
t−1, c

2
t−1) (3)

xt+1 ∼ softmax(h2t ) (4)

Each function can be thought of as a representa-
tion or embedding of its discrete input; hence het is
a representation of xt, and—due to the recursion
in (2)—h1t is a representation of x1 . . . xt.

2.2 Tagging models

To inspect our language model for learned linguis-
tic categories, we will use a collection of tagging
models, designed to mimic the behavior of our lan-
guage model but predicting the next tag rather than
the next word. That is, given x1 . . . x|x|, we model
a corresponding sequence of tags y1 . . . y|x| using
a one-layer LSTM:

het
′ = embedding(xt) (5)

h1t
′, c1t

′ = LSTM(het
′, h1t−1

′, c1t−1
′) (6)

yt+1 ∼ softmax(h1t
′) (7)

We will also discuss input taggers, which share
this architecture but instead sample yt, the tag of
the most recently observed word.

2.3 SVCCA

SVCCA is a general method to compare the cor-
relation of two vector representations. Let dA and
dB be their dimensions. ForN data points we have
two distinct views, given by matricesA ∈ RN×dA

and B ∈ RN×dB . We project these views onto a
shared subspace in two steps:

1. Use Singular Value Decomposition (SVD) to
reduce matrices A and B to lower dimen-
sional matrices A′ and B′, respectively. This
is necessary because many dimensions in the
representations are noisy, and in fact cancel
each other out (Frankle and Carbin, 2018).

2. Use Canonical Correlation Analysis (CCA)
to project A′ and B′ onto a shared sub-
space, maximizing the correlation of the pro-
jections. Formally, CCA learns matrices W
and V to maximize ρ = <W>A,V >B>

‖wW>A‖‖V >B‖ .

Intuitively, the correlation ρ will be high if both
representations encode the same information, and
low if they encode unrelated information. Figure 1
illustrates how we use SVCCA to compare repre-
sentation h2t of our language model with the recur-
rent representation of a tagger, h1t

′. In practice, we
run over all time steps in a test corpus, rather than
a single time step as illustrated.

3 Experimental Setup

We trained our LM on a corpus of tok-
enized, lowercased English Wikipedia (70/10/20
train/dev/test split). To reduce the number of
unique words in the corpus, we excluded any sen-
tence with a word type appearing fewer than 100
times. Words appearing fewer than 100 times in
the resulting training set are replaced with an un-
known token. The resulting training set has over
227 million tokens of 20K types.

We train for 50 epochs to maximize cross-
entropy, using a batch size of 40, dropout ratio
of 0.2, and sequence length of 35. The optimizer
is standard SGD with clipped gradients at 0.25,
with the learning rate quartered when validation
loss increases. The result of training is shown in
Figure 2, which illustrates the dips in loss when
learning rate changes.

3.1 Taggers
To understand the representations learned by our
LM, we compare them with the internal represen-
tations of tagging models, using SVCCA. Where
possible, we use coarse-grained and fine-grained
tagsets to account for effects from the size of the
tagset. Table 1 illustrates our tagsets.

POS tagging For syntactic categories, we use
POS tags, as in Belinkov et al. (2017). As a
coarse-grained tagset, we use silver Universal De-
pendency Parse (UDP) POS tags automatically
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Figure 1: SVCCA used to compare the layer h2 of a language model and layer h1′ of a tagger.

Tag These cats live in that house .
UDP POS DET NOUN VERB ADP DET NOUN SYM
PTB POS DT NNS VBP IN DT NN .

SEM (coarse) DEM ENT EVE ATT DEM ENT LOG
SEM (fine) PRX CON ENS REL DST CON NIL

topic 1 1 1 1 1 1 1

Table 1: An example sentence annotated with all tags, assuming its source is an article with document ID of 1.

Figure 2: Test performance of the LM. Vertical dotted
lines indicate when the optimizer rescale the step size.

added to our Wikipedia corpus with spacy.1 We
also use a corpus of fine-grained human anno-
tated Penn Treebank POS tags from the Groningen
Meaning Bank (GMB; Bos et al., 2017).

Semantic tagging We follow Belinkov et al.
(2018) in representing word-level semantic infor-
mation with silver SEM tags (Bjerva et al., 2016).
SEM tags disambiguate POS tags in ways that are
relevant to multilingual settings. For example, the
comma is not assigned a single tag as punctua-
tion, but has distinct tags according to its function:
conjunction, disjunction, or apposition. The 66
fine-grained SEM tag classes fall under 13 coarse-
grained tags, and an ‘unknown’ tag.

1https://spacy.io/

Global topic For topic, we classify the each
word of sequence by its source Wikipedia article;
for example, every word in the wikipedia article
on Trains is labeled “Trains”. This task assesses
whether the network encodes the global topic of
the sentence.

UDP silver POS and topic information use the
same corpus, taken from the 100 longest articles
in Wikipedia in a 70/10/20 train/dev/test split. The
corpus is taken from the LM training data, which
may increase the similarity between the tag model
and LM. Because both tag predictors are trained
and tested on the same domain as the LM, they
can be easily compared in terms of their similarity
to the LM representation. Though the SEM corpus
and the PTB corpus are different domains from the
Wikipedia training data, we compare activations
on the same 191K-token 100-article test corpus.

Table 2 describes the training and validation
corpus statistics for each tagging task. Note that
topic and UDP POS both apply to the same en-
wikipedia corpus, but PTB POS and SEM use two
different unaligned sets from the GMB corpus.

4 Experiments, Results, and Analysis

A benefit of SVCCA is its flexibility: it can be
used to compute correlations of a hidden represen-
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number token count label t+ 1 label t randomized
tag corpus of classes train dev acc ppl acc ppl acc ppl
UDP POS wiki 17 665K 97K 50 4.3 93 1.2 21 8.9
PTB POS GMB 36 943K 136K 51 4.7 95 1.18 14 18.0
SEM (coarse) GMB 14 937K 132K 55 3.5 91 1.3 22 9.0
SEM (fine) GMB 67 937K 132K 50 5.6 88 1.45 17 21.5
topic wiki 100 665K 97K 36 19.1 37 16.3 5 81.5

Table 2: Tag predictor and tagger statistics. Accuracy and perplexity on t + 1 are from the target tag predictor,
on t are from the input tagger. Metrics obtained when training on randomly shuffled labels are provided as a low
baseline. Accuracy is on the test set from the training domain (GMB or Wikipedia).

Figure 3: SVCCA score between representations at
each epoch and from the final trained LM.

tation with any other vector. Raghu et al. (2017)
used it to understand learning dynamics by com-
paring a learned representation to snapshots of
the same representation at different epochs during
training. We use a similar experiment to establish
the basic learning dynamics of our model. In our
shallow 2-level model, activations at h1 converge
slightly after h2 (Figure 3). This differs from the
results of Raghu et al. (2017), who found that a
5-layer stacked LSTM LM exhibits faster conver-
gence at lower layers, but this difference may be
attributed to our much larger training data, which
our model fits more accurately in fewer epochs.

Empirical upper bounds. Our main experi-
ments will test the rate at which different linguis-
tic categories are learned by different layers, but
to interpret the results, we need to understand the
behaviour of SVCCA for these models. In the-
ory, SVCCA scores can vary from 0 for no corre-
lation to 1 for perfect correlation. But in practice,
these extreme cases will not occur. To establish
an empirical upper bound on correlation, we com-
pared the similarity at each epoch of training to the
frozen final state of a LM with identical architec-
ture but different initialization, trained on the same
data (Figure 4).2 The correlations increase over

2This experiment is similar to the comparisons of ran-
domly initialized models by Morcos et al. (2018).

Figure 4: SVCCA score between the LM at each epoch
and a LM with different initialization.

Figure 5: SVCCA score between different layers of the
LM at each epoch. For example, h2t − h1t compares the
activations h2t with the activations h1t after epoch t.

time as expected, but to a maximum near 0.64;
we don’t expect correlations between our LM and
other models to exceed this value. We explore cor-
responding lower bounds in our main experiments
below.

Correlations between different layers. Next
we examine the correlation between different lay-
ers of the same model over time (Figure 5). We ob-
serve that, while over time correlation increases, in
general closer layers are more similar, and they are
less correlated than they are with the same layer of
a differently initialized model.

SVCCA vs. Diagnostic classifiers A popular
method to analyze learned representations is to use
a diagnostic classifier (Belinkov et al., 2017), a
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separate model that is trained to predict a linguistic
category of interest, yt, from an arbitrary hidden
layer ht. Diagnostic classifiers are widely used
(Belinkov et al., 2018; Giulianelli et al., 2018).
But Zhang and Bowman (2018) found that if a di-
agnostic classifier is trained on enough examples,
then random embeddings as input representations
often outperform any pretrained intermediate rep-
resentation. This suggests that diagnostic classi-
fiers may work simply by memorizing the associa-
tion between an embedding and the most frequent
output category associated with that embedding;
since for many words their category is (empiri-
cally) unambiguous, this may give an inflated view
of just how much a model “understands” about
that category.

Our use of SVCCA below will differ from the
use of diagnostic classifiers in a couple of impor-
tant ways.

1. Diagnostic classifiers use the intermediate
representations of the LM as inputs to a tagger.
A representation is claimed to encode, for exam-
ple, POS if the classifier accurately predicts it—in
other words, whether it can decode it from the rep-
resentation. We will instead evaluate the similar-
ity between the representations in an LM and in an
independently-trained tagger. The intuition behind
this is that, if the representation of our LM encodes
a particular category, then it must be similar to the
representation of model that is specifically trained
to predict that category. A benefit of this is that
the similarity can be evaluated on any dataset, not
only one that has been labeled with the linguistic
categories of interest.

2. Typically, diagnostic classifiers are used to
decode tag information about the context or most
recent input from the hidden state at the current
step. Because the hidden representation at time
t is meant to encode predictive information about
the target word at time t+1, we treat it as encoding
a prediction about the tag of the target word.

To understand the empirical strengths and
weaknesses of these approaches, we compare the
use of SVCCA and diagnostic classifiers in under-
standing learning dynamics. In other words, we
ask: is our first conceptual shift (to SVCCA) nec-
essary? To test this, we use the same model as Be-
linkov et al. (2017), which classifies an arbitrary
representation using a ReLU followed by a soft-
max layer. To be consistent with Belinkov et al.
(2017), we use yt as their target label. We repeat

Figure 6: Learning dynamics interpreted with diagnos-
tic classifiers labeling input word tag yt.

Figure 7: Learning dynamics interpreted with diagnos-
tic classifiers labeling target word tag yt+1.

their method in this manner (Figure 6) as well as
applying our second modification, in which we in-
stead target the label yt+1 (Figure 7).

We found the correlations to be relatively stable
over the course of training. This is at odds with the
results in Figures 2 and 3, which suggest that rep-
resentations change substantially during training
in ways that materially affect the accuracy of the
LM. This suggests that diagnostic classifiers are
indeed learning associations between embeddings
and output classes, and we conclude that they are
ineffective for understanding learning dynamics.
Our remaining experiments use only SVCCA.

4.1 SVCCA on Output Tag Prediction

We applied SVCCA to each layer of our LM with
the corresponding layer of each tag predictor in
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Figure 8: SVCCA correlation scores between the LM
predicting xt+1 and the tag model predicting yt+1. At
the end of each epoch, we compare the current LM with
the final tag model. Dotted lines use shuffled tags. Gray
vertical lines mark when the step size is rescaled.

order to find the correlation between the LM rep-
resentation and the tag model representation at
each level (Figure 8). To establish empirical lower
bounds on correlation, we also trained our taggers
on the same data with randomly shuffled labels, as
in Zhang et al. (2016). These latter experiments,
denoted by the dotted lines of Figure 8, show how
much of the similarity between models is caused
by their ability to memorize arbitrary associations.

The strongest similarity at recurrent layers be-
longs to the most local property, the UDP POS
tag. Both coarse- and fine-grained semantic tags,
which rely on longer range dependencies, fall be-
low UDP POS consistently. Topic, which is global
to an entire document, is the least captured and
the slowest to stabilize. Indeed, correlation with
true topic falls consistently below the score for a
model trained on randomized topic tags, imply-
ing that early in training the model’s represen-
tation does not capture enough context to iden-
tify topic, which depends on sets of words rather
than individual words. Over time correlation im-
proves, possibly because the model encodes long-
distance context. Khandelwal et al. (2018) found
that LSTMs remember content words like nouns
for more time steps than they remember function
words like prepositions and articles. We hypoth-
esize that the LM’s slower stabilization on topic
is related to this, since it must depend on content
words, and its ability to remember them increases
throughout training.

The encoder layer exhibits very different pat-
terns. Because the representation produced by the
encoder layer is local to the word, the nuances
that determine how a word is tagged in context
cannot be learned. To the contrary, similarity be-
tween the encoders declines over time as they im-
prove in their specialization. This decline points
to some easily learned patterns which are helpful
for all tasks, but which are gradually replaced by
representations more useful for language model-
ing. This process may even be considered a nat-
urally occurring analog to the common practice
of initializing the encoder layer as word embed-
dings pretrained an unrelated task such as skip-
gram or CBOW (Mikolov et al., 2013). It seems
that the ‘easy’ word properties which immediately
improve performance are similar regardless of the
particular language task.

The encoder layers are all highly similar to each
other, which suggests that the unigram representa-
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tions produced by the encoder are less dependent
on the particular end task of the neural network.
This also fits well with the literature on word em-
beddings, where we find that pretraining the en-
coder on unrelated tasks significantly improves
performance on many natural language problems.

At h1, the correlation shows a clear initial de-
cline in similarity for all tasks. This seems to point
to an initial representation that relies on simple
shared properties, which in the first stage of train-
ing is gradually dissolved before the layer begins
to converge on a structure shared with each tag
predictor. It may also be linked to the information
bottleneck learning phases explored by Shwartz-
Ziv and Tishby (2017). They suggest that neu-
ral networks learn by first maximizing the mutual
information between the input and internal rep-
resentation, then minimizing the mutual informa-
tion between the internal representation and out-
put. The network thus initially learns to effectively
represent the input, then compresses this represen-
tation, keeping only the elements relevant to the
output. If the LM begins by maximizing mutual
information with input, because the input is iden-
tical for the LM and tag models it may lead to
these similar initial representations, followed by
a decline in similarity as the compression targets
properties specific to each task.

4.2 SVCCA on Input Tagging

Our second conceptual shift is to focus on out-
put tag prediction—asking what a representation
encodes about the next output word, rather than
what it has encoded about words it has already ob-
served in the input. What effect does this have?
Since we already studied output tags in the pre-
vious set of experiments, here we consider input
tags, in the style of diagnostic classifier analysis
(Figure 9). The learning dynamics are simliar to
those for tag prediction, but the UDP POS tagger
decreases dramatically in all correlations while the
GMB-trained taggers (PTB POS, SEM (fine), and
SEM (coarse)) often increase slightly. While the
shapes of the lines are similar, UDP POS no longer
consistently dominates the other tasks in recurrent
layer correlation. Instead, we find the more gran-
ular PTB POS tags lead to the most similar repre-
sentations.

Figure 9: SVCCA correlation scores between LM ac-
tivations when predicting xt+1 and tagger activations
when labeling yt. Dotted lines use shuffled tags. Gray
vertical lines mark when the step size is rescaled.
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5 Discussion and Conclusions

We find clear patterns in the encoding of linguistic
structure with SVCCA, in contrast to the weaker
results from a less responsive diagnostic classifier.
Because SVCCA proves so much more sensitive
than the diagnostic classifiers currently in use, we
believe that future work on measuring the encod-
ing of linguistic structure should use the similarity
of individual modules from independently trained
tag predictors rather than the performance of tag
predictors trained on a particular representation.

This system should also be of interest because
it is efficient and convenient. To train a diagnos-
tic classifier, we must run a forward pass of the
LM for each forward pass of the auxiliary model.
With B as the batch size and N , D, and T as
the respective sizes of the training, development,
and test set, we must performO(N+D+T

B ) forward
pass timesteps of the LM in order to train diagnos-
tic classifiers for a single tag set. Because our tag
models are trained independently for SVCCA, we
only run the LM on the tag test set, O( TB ) times in
total. With our implementation, this difference in
complexity was expressed as SVCCA experiments
running in hours instead of the days required for a
diagnostic classifier experiment.

Our method holds another, more subtle advan-
tage. Our analysis tests a specific assumption
about how structure might be encoded within a
LM. If the model’s predictions rely on implicitly
represented linguistic categories, then its internal
representation should correlate with the represen-
tation in an explicit model of those categories.
Moreover, this correlation will be layerwise, since,
as we have seen, different layers encode different
information. But the use of diagnostic classifiers
does not reflect how each layer expects to interact
with the model as a whole.

What do we learn about the LM when a feed-
forward network cannot extract tag information di-
rectly from the embedding layer, but can from a re-
current layer? It may be tempting to conclude that
tag information relies heavily on context, but if the
embedding encodes the tag to be interpreted by a
recurrent layer, a feedforward network may not be
capable of representing the function to extract that
tag because it does not have access to a context
vector for aiding interpretation of the hidden layer,
or because its activation functions cover a differ-
ent range. By directly comparing LSTM layers to
LSTM layers and embedding layers to embedding

layers, we respect the role of each module within
the network in our analysis.

The results of our analysis imply that early in
training, representing part of speech is the natu-
ral way to get initial high performance. However,
as training progresses, it increasingly benefits the
model to represent categories with longer-range
dependencies, such as topic.

6 Future Work

One direction for future work is exploring how
generalization interacts with the correlations be-
tween LMs and tag predictors. It may be that a
faithful encoding of a property like POS tag in-
dicates that the LM is relying more on linguistic
structure than on memorizing specific phrases, and
therefore is associated with a more general model.

If these measurements of structure encoding are
associated with more general models, we might in-
troduce regularizers or other modifications that ex-
plicitly encourage correlation with a tagging task.

Combes et al. (2018) identified the phenomenon
of gradient starvation, meaning that while fre-
quent and unambiguous features are learned
quickly in training, they slow down the learning
of rarer features. For example, artificially bright-
ening images according to their class leads to a
delay in learning to represent the less consistent
natural class features. Although it is tempting to
claim that semantic structure is learned using syn-
tactic structure as natural scaffolding, it is possible
that the simple predictive power of POS is acting
as an attractor and starving semantic features that
are rarer and more ambiguous. A possible direc-
tion for future work would be to explore which of
these explanations is true, possibly by decorrelat-
ing particular aspects of linguistic structure from
language modeling representations.

The techniques in this paper could be applied to
better understand the high performance of a sys-
tem like ELMo (Peters et al., 2018). Different lay-
ers in such a system are useful for different tasks,
and this effect could be understood in terms of the
gradual divergence between the layers and their re-
spective convergence to representations geared to-
ward a single task.
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A Performance Out Of Domain

Because SEM tags and PTB POS tags were
both trained on the GMB corpus, we present the
SVCCA similarities on an in-domain GMB test
corpus as well as the Wikipedia test corpus used
elsewhere in the paper. The results are in Fig-
ures 10-11. In general correlations are higher us-
ing the original tagging domain, but not enough to
contradict our earlier analysis. The shapes of the
curves remain similar.

Figure 10: SVCCA correlation scores between LM and
yt+1 tag predictor. Dotted lines use models trained on
randomly shuffled the data. Dashed lines use GMB do-
main test data.
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Figure 11: SVCCA correlation scores between LM and
yt tagger. Dotted lines use models trained on randomly
shuffled the data. Dashed lines use GMB domain test
data.
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4.1 Comments on the paper

In addition to the insights we gain from observing the time course of training, the

model similarity method we use provides some intriguing insights even without con-

sidering the time dimension. When looking at input tagging instead of next-tag predic-

tion, we find that more granular tagging produces representations that are more similar

to LM representations (e.g., a model predicting simple Universal Dependencies POS

tags produces more LM-like representations than a model predicting more granular

PTB POS tags). This result suggests that complex tag information is retained from

input words, but the structure ultimately encoded in predictions does not resemble the

linguistic ontologies. We also see that input structure itself is retained, even given ran-

dom target labels, based on the high baseline similarity between the language model

and randomized (that is, with memorized outputs) taggers. Results like this suggest

general properties of the LSTM, and possibly further of neural networks, in their re-

liance on input structure independent of output.

These insights suggest the possibility of using similarity as a general probing method,

outside of training dynamics experiments–and indeed, since the publication of this pa-

per, representational similarity methods have been widely applied in NLP. Chrupala

and Alishahi (2019) and Chrupala (2019) both explored the correlations between dif-

ferent vector and symbolic representations using Representational Similarity Analysis.

Movva and Zhao (2020) and Bau et al. (2019) used neuron-level similarity to com-

pare models. Voita et al. (2019a) looked at the similarity between different layers of a

Transformer model using a different variant on CCA, PWCCA. Singh et al. (2019b),

meanwhile, compared representations in different languages using unadorned CCA,

and Hsu et al. (2019) used SVCCA as in our paper. Chung et al. (2020) and Wu

et al. (2020a) both surveyed a variety of similarity techniques, with Wu et al. (2020a)

validating one of the assumptions behind our method by confirming that similar archi-

tectures produced similar representations. Note that nearly all of these works postdate

the work in this chapter, and almost all of them cite it.

While in general, models are more accurate when they are more similar to the same

architecture trained with different seeds (Raghu et al., 2017), it is yet to be seen whether

high similarity across tasks (e.g., LM compared to a tagging task as in this paper)

indicates higher LM performance. If so, it would be interesting to see which tasks.

Can we glean information about LM performance from similarity to representations
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for all tasks, or only for those that involve a closer distance of dependencies (POS) or

farther (topic)? This is an essential result to confirm that similarity analysis avoids one

of the flaws of diagnostic classifiers: a lack of correlation between model accuracy and

probe accuracy.

It is worth noting that there is no theoretical reason establishing that modules should

have high similarity scores, even if they are the same type of module and situated with

a similar environment in the pipeline of a model, but in practice (Chung et al., 2020;

Raghu et al., 2017; Morcos et al., 2018a) this does seem to be the case. Therefore,

although CCA yields specifically a linear similarity, it is distinct from the common

use of linear functions as probing models in that there is a clear empirical justification

for the assumption that two representations will be linearly similar, if they are accom-

plishing the same function (such as representing POS as a recurrent module feeding

into a softmax layer).

4.1.1 Generalizing to Attentional Models

The methods of this paper could be straightforwardly applied to any Transformer-based

LM, including masked LMs rather than autoregressive. In order to do so, one would

substitute the desired tag for the word being predicted and apply SVCCA to the acti-

vation vectors produced by, e.g., the feedforward layers of each Transformer module.

In addition, similarity of the attention distributions used by models predicting a tag vs.

a word could be measured through Shannon- or KL-divergence.



Chapter 5

Beyond Probing: The Development of

Hierarchical Construction

“Oh no,” said Milo seriously. “In my family we all start on the

ground and grow up, and we never know how far until we

actually get there.”

“What a silly system.” The boy laughed. “Then your head keeps

changing its height and you always see things in a different way”

Norton Juster, The Phantom Tollbooth

In Chapter 4, we saw that an LSTM quickly learns properties like POS tags which

depend mostly on local context. But it’s not so quick to learn topic tags, which depend

on more distant context in the document; instead, the LSTM seems to initially remove

topic information. In general, this model architecture learns short-distance associations

faster than long-distance ones, but does it depend on short-distance associations to

build the longer-distance ones?

This paper describes how hierarchical syntactic and linguistic structures evolve in an

LM: in these synthetic environments, they actually emerge through a soft chunking

process. That is, we show that throughout training, the LSTM learns stereotyped new

trees out of the subtrees it has already learned, using those subtrees as scaffolding. The

resulting theory of hierarchical construction goes beyond the tracking of broad prop-

erties like model similarity or probe performance over the course of training. Instead,

we propose a specific local process that leads to compositional behavior. This local

process entails chunks phrase meanings together, so the meaning of words depends

57
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increasingly on familiar neighbors. We quantify this interdependence according to

the difference between the isolated representations of phrases (computed with Contex-

tual Decomposition) and their combined meanings. We inspect the interdependence

between two different phrases in a synthetic environment to view how familiar con-

stituents influence the training of their neighbors1.

Publication Status This work was published in Findings of EMNLP 2020.

1In the paper this is described as Decompositional Interdependence. We prefer to call it Semantic
Interdependence Summary, or SIS.
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Abstract

Recent work in NLP shows that LSTM lan-
guage models capture hierarchical structure in
language data. In contrast to existing work, we
consider the learning process that leads to their
compositional behavior. For a closer look at
how an LSTM’s sequential representations are
composed hierarchically, we present a related
measure of Decompositional Interdependence
(DI) between word meanings in an LSTM,
based on their gate interactions. We connect
this measure to syntax with experiments on
English language data, where DI is higher on
pairs of words with lower syntactic distance.
To explore the inductive biases that cause these
compositional representations to arise during
training, we conduct simple experiments on
synthetic data. These synthetic experiments
support a specific hypothesis about how hi-
erarchical structures are discovered over the
course of training: that LSTM constituent rep-
resentations are learned bottom-up, relying on
effective representations of their shorter chil-
dren, rather than learning the longer-range re-
lations independently from children.

1 Introduction

For years the LSTM dominated language architec-
tures. It remains a popular architecture in NLP,
and unlike Transformer-based models, it can be
trained on small corpora (Tran et al., 2018).1 Ab-
nar et al. (2020) even found that the recurrent in-
ductive biases behind the LSTM’s success are so
essential that distilling from them can improve the
performance of fully attentional models. However,
the reasons behind the LSTM’s effectiveness in
language domains remain poorly understood.

1As evidence of the ongoing popularity of LSTMs in NLP,
a Google Scholar search restricted to aclweb.org since
2019 finds 191 citations to the original LSTM paper (Hochre-
iter and Schmidhuber, 1997) and 242 citations to the original
Transformer paper (Vaswani et al., 2017).

A Transformer can encode syntax using at-
tention (Hewitt and Manning, 2019), and some
LSTM variants explicitly encode syntax (Bowman
et al., 2016; Dyer et al., 2016). So, the success
of these models is partly explained by their abil-
ity to model syntactic relationships when predict-
ing a word. By contrast, an LSTM simply scans
a sentence from left to right, accumulating mean-
ing into a hidden representation one word at a
time, and using that representation to summarize
the entire preceding sequence when predicting the
next word. Yet we have extensive evidence that
trained LSTMs are also sensitive to syntax. For
example, they can recall more history in natural
language data than in similarly Zipfian-distributed
n-gram data, implying that they exploit linguis-
tic structure in long-distance dependencies (Liu
et al., 2018). Their internal representations appear
to encode constituency (Blevins et al., 2018; Hup-
kes and Zuidema, 2018) and syntactic agreement
(Lakretz et al., 2019; Gulordava et al., 2018). In
this paper, we consider how such representations
are learned, and what kind of inductive bias sup-
ports them.

To understand how LSTMs exploit syntax, we
use contextual decomposition (CD; Section 2.1),
a method that computes how much the hidden rep-
resentation of an LSTM depends on particular past
span of words. We then extend CD to Decom-
positional Interdependence (DI; Section 2.2), a
measure of interaction between spans of words to
produce the representation at a particular timestep.
For example, in the sentence “Socrates asked
the student trick questions”, we might expect the
hidden representation of the LSTM at the word
“questions” to interact primarily with its syntac-
tic head “asked”, and less with the direct object
“the student”. If so, then an LSTM could be seen
as implementing compositional localism (Hupkes
et al., 2020): if a hidden representation encodes
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meaning, then this meaning is composed from lo-
cal syntactic relationships. Our experiments on
syntactically-parsed corpora (Section 3) illustrate
this property — interdependence decreases with
syntactic distance, stratified by surface distance.

We then turn to a hypothesis about how such
representations are learned. Using a simple syn-
thetic corpus (Section 4.2), we allow LSTMs to
learn to represent short sequences before they
learn longer sequences that are dependent on
them. Our goal is to then illustrate how they
use representations of short sequences in order
to learn longer dependencies—if these smaller
constituents are unfamiliar, LSTMs learn more
slowly. Further experiments (Section 4.3.1) isolate
hierarchical behavior from other factors causing
local relations to be learned first, indicating that
the model tends to build a subtree from its smaller
constituents. We conclude that LSTMs compose
hierachically because they learn bottom-up.

2 Methods

Our DI measure is a natural extension of Contex-
tual Decomposition (CD; Murdoch et al., 2018), a
tool for analyzing the representations produced by
LSTMs. To conform with Murdoch et al. (2018),
our English language experiments use a one layer
(400-dim) LSTM, with inputs taken from an em-
bedding layer and outputs processed by a softmax
layer.

2.1 Contextual Decomposition

We now will provide a blackbox explanation of
CD, the groundwork for our DI. Let us say that we
need to determine when our language model has
learned that “either” implies an appearance of “or”
later in the sequence—a convenient test used since
at least Chomsky (1956). We consider an example
sentence, “Either Socrates is mortal or not”. Be-
cause many nonlinear functions are applied in the
intervening span “Socrates is mortal”, it is difficult
to directly measure the influence of “either” on the
later occurrence of “or”. To dissect the sequence
and understand the impact of individual elements
in the sequence, we could employ CD.

CD is a method of looking at the individual in-
fluences that words and phrases in a sequence have
on the output of a recurrent model. Illustrated
in Figure 1, CD decomposes the activation vector
produced by an LSTM layer into a sum of relevant
and irrelevant parts. The relevant part is the ex-

Figure 1: CD uses linear approximations of gate op-
erations to linearize the sequential application of the
LSTM module. CD produces the vector htβ isolating
the contribution of “Either” to the vector ht predicting
“or”, as well as producing the irrelevant contribution
ht
β̄;βÓβ̄ . The irrelevant contribution considers both β̄

and its interactions with β. In our figures, red will rep-
resent matched tokens and green the intervening span
of tokens through which information must pass to pre-
dict the match.

clusive contribution of the set of words in focus,
i.e., a set of words whose impact we want to mea-
sure. We denote this set of words as β. The irrele-
vant part includes the contribution of all words not
in that set (denoted β̄) as well as interactions be-
tween the relevant and irrelevant words (denoted
βÓβ̄). For an output hidden state vector ht, CD
will decompose it into two vectors: the relevant
htβ , and irrelevant ht

β̄;βÓβ̄ , such that:

h ≈ htβ + htβ̄;βÓβ̄ (1)

This decomposition of the hidden state is based
on individual Shapley decompositions of the gat-
ing mechanisms themselves, as detailed in Ap-
pendix A.

Because the individual contributions of the
items in a sequence interact in nonlinear ways, this
decomposition is only an approximation and can-
not exactly compute the impact of a specific word
or words on the label predicted. CD linearizes
hidden states with low approximation error, but
the presence of slight nonlinearities in the inter-
actions between components forms the basis for
our measure of Decompositional Interdependence
later on.2

2In our analyses, CD yielded mean approximation error
‖(vt

β
+vt

β̄;βÓβ̄)−v‖
‖v‖ < 10−5 at the logits. However, this mea-

surement misses another source of approximation error: the
allocation of credit between β and the interactions βÓβ̄.
Changing the sequence out of focus β̄ might influence vtβ , for
example, even though the contribution of the words in focus
should be mostly confined to the irrelevant vector component.
This approximation error is crucial because the component
attributed to βÓβ̄ is central to our measure of DI.
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We can use softmax to convert the relevant log-
its (the hidden units after a linear transformation)
vtβ into a probability distribution as P (Y | xβ) =

softmax(vtβ). This allows us to analyze the effect
of input xβ on the probability of a later element
while controlling for the influence of the rest of
the sequence.

2.2 Decompositional Interdependence

Next, we extend CD to focus on nonlinear inter-
actions. We frame compositionality in terms of
whether the meanings of a pair of words or word
subsets can be treated independently. For exam-
ple, a “slice of cake” can be broken into the indi-
vidual meanings of “slice”, “of”, and “cake”, but
an idiomatic expression such as “piece of cake”,
meaning a simple task, cannot be broken into the
individual meanings of “piece”, “of”, and “cake”.
The words in the idiom likely have higher Decom-
positional Interdependence, or reliance on their
interactions to build meaning. Another influence
on DI should be syntactic relation; if you “happily
eat a slice of cake”, the meaning of “cake” does
not depend on “happily”, which modifies “eat”
and is far on the syntactic tree from “cake”, but the
meaning of “cake” should be more dependent on
“slice”, which gives context for its part of speech
and suggests that it is concrete.3 We will use
the nonlinear interactions in contextual decompo-
sition to analyze the DI between words alternately
considered in focus.

Generally, CD considers all nonlinear interac-
tions between the relevant and irrelevant sets of
words to fall under βÓβ̄, the irrelevant contri-
bution, although other allocations of interactions
have been proposed (Jumelet et al., 2019). DI uses
these nonlinearities to discover how strongly a pair
of spans are associated. A fully flat structure for
building meaning could lead to a contextual repre-
sentation that requires memorization of each word,
breaking the simplifying assumption at the heart of
CD that each word has an independent meaning to
be incorporated into the sentence.

Given two interacting sets of words to poten-
tially designate as the β in focus, A,B such that
A ∩ B = ∅, we use a measure of DI to quantify

3In our natural language experiments, we focus on de-
pendency relations, but the inductive bias we observe is to-
wards broadly hierarchical patterns in which longer relations
depend on local constituents. DI analysis of other sources
of this latent hierarchical structure, such as idiom, are left to
future work.

Socrates asked the student trick questions

ROOT

NSUBJ

IOBJ

OBJ

DET ADJ

Figure 2: A dependency parsed sentence.

Figure 3: Average DI between word pairs xl, xr at dif-
ferent sequential distances r − l.

the degree to which A ∪ B be broken into their
individual meanings. With htA and htB denoting
the relevant contributions at the hidden layers of
A and B according to CD, and htA∪B as the rele-
vant contribution ofA∪B, we compute the magni-
tude of nonlinear interactions, rescaled to control
for the magnitude of the representation:

DIt(A,B) =
‖htA∪B − (htA + htB)‖2

‖htA∪B‖2
(2)

This quantity is related to probabilistic indepen-
dence. We would say that random variables X
and Y are independent if their joint probability
P (X,Y ) = P (X)P (Y ). Likewise, the meanings
of A and B can be called independent if htA∪B =
htA + htB . A parallel can also be drawn to Infor-
mation Quality Ratio (Jetka et al., 2019), a nor-
malized form of mutual information which quanti-
fies information exchanged between two variables
against total uncertainty, if we view a decomposed
output vector htβ as information transmitted from
β:

IQRt(A,B) =
H(A,B)−H(A|B)−H(B|A)

H(A,B)
(3)

Note that CD is applied to the representation at
a particular timestep, and therefore DI is implic-
itly an operation that takes three parameters (ex-
cluding the sentence): A,B and the timestamp
at which to access their representations. How-
ever, in order to minimize information degra-
dation over time, we access ht at the lowest
timestep accommodating all spans in focus, t =
max(idx(A), idx(B)).
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Figure 4: Mean DI (y-axis) between word pairs at varying syntactic distances (x-axis), stratified by whether the
POS tags are closed or open class (line color) and by sequential distance (plot title). The y-axis ranges differ, but
the scale is the same for all plots. Each mean is plotted only if there are at least 100 cases to average.

Concurrently with this work, Chen et al. (2020)
also developed a method of studying the inter-
action between words using Shapley-based tech-
niques like CD. However, their method was based
on an assumption of underlying hierarchical struc-
ture and therefore unsuitable for the experiments
we are about to conduct. Their results nonetheless
validate the relationship between feature interac-
tion and syntactic structure.

3 English Language Experiments

We now apply our measure of DI to a natu-
ral language setting to see how LSTMs employ
bottom-up construction. In natural language, dis-
entangling the meaning of individual words re-
quires contextual information which is hierarchi-
cally composed. For example, in the sentence,
“Socrates asked the student trick questions”, “trick
questions” has a clear definition and strong con-
notations that are less evident in each word indi-
vidually. However, knowing that “trick” and “stu-
dent” co-occur is not sufficient to clarify the mean-
ing and connotations of either word or compose a
shared meaning.

Here, we consider whether the LSTM ob-
serves headedness, by composing meaning be-
tween a headword and its immediate modifiers—
behavior which a Recurrent Neural Network
Grammar (RNNG; Dyer et al., 2016) also
learns (Kuncoro et al., 2017). If a standard LSTM
learns similar behavior in line with syntax, it is im-
plicitly a syntactic language model.

These experiments use language models trained
on wikitext-2 (Merity et al., 2016), run on the Uni-
versal Dependencies corpus English-EWT (Sil-
veira et al., 2014).

3.1 DI and Syntax

To assess the connection between DI and syntax,
we consider the DI of word pairs with different
syntactic distances. For example, in Figure 2,
“trick” is one edge away from “questions”, two
from “asked”, and four from “the”. In Figure 3,
we see that in general, the closer two words occur
in sequence, the more they influence each other,
leading to correspondingly high DI. Therefore we
stratify by the sequential distance of words when
we investigate syntactic distance.

As synthetic data experiments will show (Sec-
tion 4), phrase frequency and predictability play a
critical role in determining DI (although we found
raw word frequency shows no clear correlation
with DI in English). In Figure 4, we control for
these properties through stratifying by open and
closed POS tag class. Open class POS tags fre-
quently accept new words (e.g., nouns and adjec-
tives), whereas closed class tags are mostly con-
sistent historically (e.g., determiners and preposi-
tions). These classes vary in their predictability in
context; for example, determiners are almost al-
ways soon followed by a noun, but adjectives ap-
pear in many constructions like “Socrates is mor-
tal” where they are not. Irrespective of both se-
quential distance and POS class, we see broadly
decreasing trends in DI as the syntactic distance
between words increases, consistent with the pre-
diction that syntactic proximity drives DI. This
pattern is clearer as words become further apart in
the sequence, likely due to the absence of localized
non-syntactic influences such as priming effects.

This behavior shows a tendency towards hierar-
chical construction aligned with syntax, wherein
the LSTM ties a head’s representation together
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Socrates is mortalEither

=⇒

=⇒

Socrates is mortalEither

Either Socrates is mortalEither Socrates is mortal

Figure 5: Top: A familiar span (indicated by a triangle
illustrating it as a recognizable constituent) is used as a
scaffold in its new context, allowing the model to con-
struct a closely interdependent representation for pre-
dicting the next word. Bottom: An unfamiliar span
cannot be used as a scaffold, so the model is forced
to learn the either/or relation independently.

with its child constituents and further associations
are less dependent on each other. Similar behav-
ior is the goal of RNNGs and other models which
use stack LSTMs (Dyer et al., 2015), which ensure
the words in a constituent will be highly interde-
pendent in their shared representation because the
constituent will be based on a dictionary lookup
for its subtree structure. In an RNNG, this behav-
ior is a result of bottom-up learning during train-
ing, when the composition operation combines ex-
isting tag subtrees into a new lookup key. Our
next experiments will illustrate how LSTMs al-
ready learn bottom-up implicitly, because they are
biased towards the top behavior in Figure 5 when
a scaffolding environment is available.

4 Synthetic Experiments

Our next experiments use synthetic data to show
how training is bottom-up. LSTM training sees
long-range connections discovered after short-
range connections; in particular, document-level
content topic information is encoded much later
in training than local information like part of
speech (Saphra and Lopez, 2019).

These experiments explain such learning phases
by showing that the training process is inherently
compositional due to bottom-up learning.4 That
is, not only are the shorter sequences learned first,
but they form the basis for longer relations learned
over them. For example, the model might learn to

4Other phenomena contribute but are outside our current
focus. First, long-range connections are less consistent (par-
ticularly in a right-branching language like English), and will
thus take longer to learn (Appendix B. For example, the pat-
tern of a determiner followed by a noun will appear very fre-
quently, as in “the man”, while long-range connections like
“either/or” are rarer. Second, rarer patterns are learned slowly
due to vanishing gradients (Appendix C).

represent sequences like “Socrates is mortal” be-
fore it can learn to represent the either/or relation
around it, building from short constituents to long.
This behavior is seen in shift-reduce parsers and
their neural derivatives like RNNGs.

Bottom-up training is not a given and must be
verified.5 However, if the hypothesis holds and
training builds syntactic patterns hierarchically, it
can lead to representations that are built hierarchi-
cally at inference time, reflecting linguistic struc-
ture, as we have seen. To test the idea of a com-
positional training process, we use synthetic data
that controls for the consistency and frequency of
longer-range relations. We find:

1. LSTMs trained with familiar intervening
spans have poor performance predicting long
distance dependents like “or” without famil-
iar intervening spans (Figure 7). This could
be explained by the idea that they never ac-
quire the either/or rule (instead memorizing
the entire sequence).

2. But in fact, the either/or rule is acquired
faster with familiar constituents, as is clear
even if the role of “either” is isolated (Fig-
ure 8).

3. The poor performance is instead connected
to high interdependence between “either” and
the intervening span (Figures 9 and 10).

4. Observations (2) and (3) support the idea
that acquisition is biased towards bottom-up
learning, using the constituent as a scaffold to
support the long-distance rule.

4.1 Training Procedure

We train our one-layer 200-dim LSTM with a
learning rate set at 1 throughout and gradients
clipped at 0.25. We found momentum and weight
decay to slow rule learning in this setting, so they
are not used.

4.2 Long Range Dependencies

First, we describe long-range rules whose acqui-
sition will illuminate compositional learning dy-

5In fact, learning simple rules early on might inhibit the
learning of more complex rules through gradient starvation
(Combes et al., 2018), in which more frequent features dom-
inate the gradient directed at rarer features. Shorter famil-
iar patterns could slow down the process for learning longer
range patterns by trapping the model in a local minimum
which makes the long-distance rule harder to reach.
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(a) unfamiliar-scaffold training set (b) familiar-scaffold training set

(c) out-domain test set (d) in-domain test set

Figure 6: Caricatured train and test datasets for exploring the effect of scaffold familiarity on learning longer
distance relations. We have highlighted rule boundaries α and ω in red, and scaffold q ∈ Qk in green.

namics. Consider how “either” predicts “or”, of-
ten interceded by a closed constituent. To learn
this rule, a language model must backpropagate
information from the occurrence of “or” through
the intervening span of words, which we will call a
scaffold. Perhaps the scaffold is recognizable as a
particular type of constituent: in “Either Socrates
is mortal or not”, “or” becomes predictable after a
constituent closes. But what if the scaffold is unfa-
miliar and its structure cannot be effectively repre-
sented by the model? For example, if the scaffold
includes unknown tokens: “Either slithy toves gyre
or not”. How will the gradient carried from “or” to
“either” be shaped according to the scaffold, and
how will the representation of that long-range con-
nection change accordingly?

A familiar scaffold like “Socrates is mortal”
could be used by a bottom-up training process as
a short constituent on which to build longer-range
representations, so the meaning of “Either” will
depend on a similar constituent. Conversely, if
training is not biased to be compositional, the con-
nection will be made regardless of the scaffold6,
so the rule will generalize to test data: “either”
will always predict “or”. This either/or association
might later develop a dependency on the interven-
ing span due to the nature of the data, but it will
initially learn to predict without such scaffolding.
We use a synthetic corpus to test these predictions.

In our synthetic corpus, we generate data uni-

6Such behavior does reflect another aspect of composi-
tionality, that of systematicity (Hupkes et al., 2020).

formly at random from a vocabulary Σ. We insert
n instances of the long-distance rule αΣkω, with
scaffold Σk of length k, open symbol α, and close
symbol ω, with α, ω 6∈ Σ (with α as “either” and
ω as “or”). Relating to our running example, α
stands for “either” and ω stands for “or”. We use
a corpus of 1m tokens with |Σ| = 1k types, which
leaves a low probability that any scaffold sequence
longer than 1 token appears elsewhere by chance.

4.3 The Effect of Scaffold Familiarity

To create a dataset of long-range connections with
predictable scaffolds, we modify the original syn-
thetic data (Figure 6a) so each scaffold appears
frequently outside of the α/ω rule (Figure 6b).
The scaffolds are sampled from a randomly gen-
erated vocabulary of 100 phrases of length k, so
each unique scaffold q appears in the training set
10 times in the context αqω. This repetition is nec-
essary in order to fit 1000 occurrences of the rule
in all settings.

In the familiar-scaffold setting, we randomly
distribute 1000 occurrences of each scaffold
throughout the corpus outside of the rule patterns.
Therefore each scaffold is seen often enough to
be memorized (see Appendix B). In the original
unfamiliar-scaffold setting, q appears only as a
scaffold, so it is not memorized independently.

We also use two distinct test sets. Our in-
domain test set (Figure 6d) uses the same set of
scaffolds as the train set. In Figure 7a, the model
learns to predict the close symbol faster if the scaf-
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(a) In-domain scaffold test setting (b) Random scaffold test setting

Figure 7: Mean marginal target probability of the close symbol in a rule. Solid lines are trained in the unfamiliar-
scaffold set, dashed lines on familiar-scaffold. Color is specified by scaffold length (k). Scale of y-axis is matched
among graphs.

folds are otherwise memorized. However, this ef-
fect may be due to vanishing gradients, discussed
below.

These familiar scaffolds do not teach the gen-
eral long distance dependency rule. If the test set
scaffolds are sampled uniformly at random (Fig-
ure 6c), Figure 7b shows that the familiar-scaffold
training setting never teaches the model to gener-
alize the α/ω rule. For a model trained on the fa-
miliar domain, a familiar scaffold is required to
predict the close symbol.

Vanishing Gradients: A familiar intervening
span is predictably a less effective scaffold, be-
cause the familiarity will limit longer distance in-
formation due to vanishing gradients. Consider in
a simple RNN, as the gradient of the error et at
timestep t backpropagates k timesteps through the
hidden state h:

∂et

∂ht−k
=
∂et

∂ht

k∏

i=1

∂ht−i+1

∂ht−i

The backpropagated message is multiplied repeat-
edly by the gradient at each timestep in the scaf-
fold. If the recurrence derivatives ∂hi+1

∂hi
are large

at some weight, the correspondingly larger back-
propagated gradient ∂et

∂ht−k
will accelerate descent

at that parameter. In other words, an unpredictable
scaffold associated with a high error will domi-
nate the gradient’s sum over recurrences, delaying
the acquisition of the symbol-matching rule. In
the case of an LSTM, Kanuparthi et al. (2018) ex-
pressed the backpropagated gradient as an iterated
addition of the error from each timestep, leading
to a similar effect.

Figure 8: Mean target probability of ω at its correct
timestep based on CD with α in focus, on out-domain
test set. Solid lines are trained in the unfamiliar-
scaffold set, dashed lines on familiar-scaffold.

See Appendix C for confirmation of the differ-
ence in gradients between familiar and unfamiliar
scaffolds. The speed of acquisition of the depen-
dency rule in a familiar-scaffold training environ-
ment therefore has an explanation other than hier-
archical composition. Therefore, in order to con-
firm our proposed compositional bias, we observe
the interactions between scaffold and superstruc-
ture (long distance dependency) using DI.

4.3.1 Isolating the Effect of the Open-Symbol
Raw predictions in the out-domain test setting ap-
pear to suggest that the familiar-scaffold training
setting fails to teach the model to associate α and
ω. However, the changing domain makes this an
unfair assertion: the poor performance may be at-
tributed to wholesale memorization of αq. To il-
lustrate that the rule is learned regardless of train-
ing scaffolds, we use CD to isolate the contribu-
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Figure 9: The predicted P (xt = ω|xt−k . . . xt−k+i)
according to CD, varying i as the x-axis and with
xt−k = α and k = 8. Solid lines are trained in
the unfamiliar-scaffold set, dashed lines on familiar-
scaffold.

tions of the open symbol in the out-domain test
setting (Figure 8). Furthermore, we confirm that
the familiar-scaffold training setting enables ear-
lier acquisition of this rule.

To what, then, can we attribute the failure to
generalize out-domain? Figure 9 illustrates how
the unfamiliar-scaffold model predicts the close
symbol ω with high probability based only on the
contributions of the open symbol α. Meanwhile,
the familiar-scaffold model probability increases
substantially with each symbol consumed until the
end of the scaffold, indicating that the model is re-
lying on interactions between the open symbol and
the scaffold rather than registering only the effect
of the open symbol. Note that this effect cannot
be because the scaffold is more predictive of ω.
Because each scaffold appears frequently outside
of the specific context of the rule in the familiar-
scaffold setting, the scaffold is less predictive of ω
based on distribution alone.

These results indicate that predictable patterns
play a vital role in shaping the representations of
symbols around them by composing in a way that
cannot be easily linearized as a sum of the compo-
nent parts. In particular, as seen in Figure 10, the
DI between open symbol and scaffold is substan-
tially higher for the familiar-setting model and in-
creases throughout training. Long-range connec-
tions are not learned independently from scaffold
representations, but are built compositionally us-
ing already-familiar shorter subsequences as scaf-
folding.

Figure 10: Mean DI(α, scaffold) on the in-domain test
set. Solid lines are trained in the unfamiliar-scaffold
set, dashed lines on familiar-scaffold.

5 Discussion & Related Work

Humans learn by memorizing short rote phrases
and later mastering the ability to construct deep
syntactic trees from them (Lieven and Tomasello,
2008). LSTM models learn by backpropagation
through time, which is unlikely to lead to the same
inductive biases, the assumptions that define how
the model generalizes from its training data. It
may not be expected for an LSTM to exhibit sim-
ilarly compositional learning behavior by build-
ing longer constituents out of shorter ones during
training, but we present evidence in favor of such
learning dynamics.

LSTMs have the theoretical capacity to encode
a wide range of context-sensitive languages, but
in practice their ability to learn such rules from
data is limited (Weiss et al., 2018). Empirically,
LSTMs encode the most recent noun as the subject
of a verb by default, but they are still capable of
learning to encode grammatical inflection from the
first word in a sequence rather than the most recent
(Ravfogel et al., 2019). Therefore, while inductive
biases inherent to the model play a critical role in
the ability of an LSTM to learn effectively, they
are neither necessary nor sufficient in determining
what the model can learn. Hierarchical linguistic
structure may be learned from data alone, or be
a natural product of the training process, with nei-
ther hypothesis a foregone conclusion. We provide
a more precise lens on how LSTM training is itself
compositional, beyond the properties of data.

There is a limited literature on compositionality
as an inductive bias of neural networks. Saxe et al.
(2019) explored how hierarchical ontologies are
learned by following their tree structure in 2-layer
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feedforward networks. LSTMs also take advan-
tage of some inherent trait of language (Liu et al.,
2018) . The compositional training we have ex-
plored may be the mechanism behind this biased
representational power.

Synthetic data, meanwhile, has formed the ba-
sis for analyzing the inductive biases of neu-
ral networks and their capacity to learn compo-
sitional rules. Common synthetic datasets in-
clude the Dyck languages (Suzgun et al., 2019;
Skachkova et al., 2018), SPk (Mahalunkar and
Kelleher, 2019), synthetic variants of natural lan-
guage (Ravfogel et al., 2019; Liu et al., 2018), and
others (Mul and Zuidema, 2019; Liška et al., 2018;
Korrel et al., 2019). Unlike these works, our syn-
thetic task is not designed primarily to test the bi-
ases of the neural network or to improve its per-
formance in a restricted setting, but to investigate
the internal behavior of an LSTM in response to
memorization.

Investigations into learning dynamics like ours
may offer insight into selecting training curricula.
The application of a curriculum is based on the
often unspoken assumption that the representation
of a complex pattern can be reached more easily
from a simpler pattern. However, we find that
effectively representing shorter scaffolds actually
makes a language model less effective at general-
izing a long-range rule, as found by Zhang et al.
(2018). This less generalizable representation is
still learned faster, which may be why Zhang et al.
(2017) found higher performance after one epoch.
Our work suggests that measures of length, includ-
ing syntactic depth, may be inappropriate bases for
curriculum learning.

6 Future Work

While we hope to isolate the role of long range de-
pendencies through synthetic data, we must con-
sider the possibility that the natural predictabil-
ity of language data differs in relevant ways from
the synthetic data, in which the scaffolds are pre-
dictable only through pure memorization. Be-
cause LSTM models take advantage of linguistic
structure, we cannot be confident that predictable
natural language exhibits the same cell state dy-
namics that make a memorized scaffold promote
or inhibit long-range rule learning. Future work
could test our findings on the learning process
through carefully selected natural language, rather
than synthetic, data.

Our natural language results could lead to DI as
a structural probe for testing syntax. Such a probe
can be computed directly from an LSTM without
learning additional parameters as required in other
methods (Hewitt and Manning, 2019). In this way,
it is similar to the probes that have been developed
using attention distributions (Clark et al., 2019).
By computing associations naturally through DI,
we can even escape the need to augment models
with attention just to permit analysis, as Kuncoro
et al. (2017).

Some effects on our natural language experi-
ments may be due to the predictable nature of En-
glish syntax, which favors right-branching behav-
ior. Future work could apply similar analysis to
other languages with different grammatical word
orders.

7 Conclusions

Using our proposed tool of Decompositional In-
terdependence, we illustrate how information ex-
changed between words aligns roughly with syn-
tactic structure, indicating LSTMs compose mean-
ing bottom-up. Synthetic experiments then illus-
trate that a memorized span intervening between
a long distance dependency promotes early learn-
ing of the dependency rule, but fails to generalize
to new domains, implying that these memorized
spans are used as scaffolding in a bottom-up learn-
ing process.

This combination of behaviors is similar to
a syntactic language model, suggesting that the
LSTM’s demonstrated inductive bias towards hi-
erarchical structures is implicitly aligned with our
understanding of language and emerges from its
natural learning process.
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A Details of Contextual Decomposition

For an output hidden state vector ht, CD will de-
compose it into two vectors: the relevant htβ , and
irrelevant ht

β̄;βÓβ̄ , such that:

h ≈ htβ + htβ̄;βÓβ̄

This decomposed form is achieved by lineariz-
ing the contribution of the words in focus at each
gate. This is necessarily approximate, because the
internal gating mechanisms in an LSTM each em-
ploy a nonlinear activation function, either σ or
tanh. Murdoch et al. (2018) use a linearized ap-
proximation Lσ for σ and linearized approxima-
tion Ltanh for tanh such that for arbitrary input∑N
j=1 yj :

σ




N∑

j=1

yj


 =

N∑

j=1

Lσ(yj) (4)

These approximations are then used to split
each gate into components contributed by the pre-
vious hidden state ht−1 and by the current input
xt, for example the input gate it:

it = σ(Wix
t + Vth

t−1 + bi)

≈ Lσ(Wix
t) + Lσ(Vth

t−1) + Lσ(bi)

The linear form Lσ is achieved by computing
the Shapley value (Shapley, 1953) of its param-
eter, defined as the average difference resulting
from excluding the parameter, over all possible
permutations of the input summants. To apply
Formula 4 to σ(y1 + y2) for a linear approxima-
tion of the isolated effect of the summant y1:

Lσ(y1) =
1

2
[(σ(y1)−σ(0))+(σ(y2+y1)−σ(y1))]

With this function, we can take a hidden
state from the previous timestep, decomposed as
ht−1 ≈ ht−1

β + ht−1
β̄;βÓβ̄ and add xt to the appro-

priate component. For example, if xt is in focus,
we count it in the relevant function inputs when
computing the input gate:

it = σ(Wix
t + Vth

t−1 + bi)

≈ σ(Wix
t + Vt(h

t−1
β + ht−1

β̄;βÓβ̄) + bi)

≈ [Lσ(Wix
t + Vth

t−1
β ) + Lσ(bi)]

+Lσ(Vth
t−1
β̄;βÓβ̄)

= itβ + itβ̄;βÓβ̄

This provides an expression of the approximate
input gate as the sum of relevant and irrelevant
components. By ignoring the irrelevant compo-
nents while computing the module output ht, we
produce htβ . Thus we linearize and isolate the ef-
fect of β.

B The Effect of Rule Frequency and
Length

Here, we investigate how the frequency of a rule
affects the ability of the model to learn the rule by
varying the number of rule occurrences n and the
rule length k.

The results in Figure 11 illustrate how a longer
scaffold length requires more examples before the
model can learn the corresponding rule. We con-
sider the probability assigned to the close symbol
according to the contributions of the open sym-
bol, excluding interaction from any other token in
the sequence. For contrast, we also show the ex-
tremely low probability assigned to the close sym-
bol according to the contributions of the scaffold
taken as an entire phrase. In particular, note the
pattern when the rule is extremely rare: The prob-
ability of the close symbol β as determined by the
open symbol α is low but steady, while the proba-
bility as determined by the scaffold declines with
scaffold length due to the accumulated low proba-
bilities from each element in the sequence.

C Smaller scaffold gradient, faster rule
learning

Figure 12 confirms that a predictable scaffold is
associated with a smaller error gradient. Because
of the mechanics of backpropagation through time
next described, this setting will teach the α/ω rule
faster.
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Figure 11: The predicted probability P (xt = ω), according to the contributions of open symbol xt−k = α and of
the scaffold sequence xt−k+1 . . . xt−1, for various rule occurrence counts n. Shown at 40 epochs.

Figure 12: Average gradient magnitude ∆Et+−k+d,
varying d up to the length of the scaffold. Solid lines
are the unpredictable scaffold setting, dashed lines are
the predictable scaffold setting.
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5.1 Comments on the Paper

In this paper, we have treated bottom-up composition, in contrast with top-down com-

position, similarly to traditional work in parsing (Jurafsky and Martin, 2009, pp 428-

432). That is, we show how the LSTM chunks syntactic constituents together, itera-

tively building into larger trees, rather than learning larger tree patterns and splitting

them, or executing some idiosyncratic haphazard system of learning common connec-

tions which somehow end up similar to syntax. We measure this compositional be-

havior by measuring how interdependent words are, which is correlated with syntactic

proximity.

Linguistics has a long history of argument over the nature of compositionality, con-

sidering the conflicting nature of bottom-up and top-down constructions of meaning

(Herbelot, 2020). First, Frege’s Principle points to bottom-up construction of mean-

ing from repeated joining of constituents, declaring that “the meaning of the whole

sentence is a function of the meanings of its parts” (Cresswell, 1973). This leads to

the localism and resulting tree structure we analyze here, but there are other aspects to

what we call “compositionality” (Hupkes et al., 2020). The top-down view is a recog-

nition that no word has meaning independent of its context—which is also fundamental

to the measure of interdependence, as it depends on the impossibility of separating out

any word’s meaning entirely from the nearby words it interacts with.

We chose to consider how interdependence reveals bottom-up construction, but we

could just as easily have analyzed interdependence as a lens into the top-down con-

struction of meaning through context. Future work, for example, may consider stereo-

typed dialog (like exchanges of greetings), coreference, or multiword expressions (Schnei-

der and Smith, 2015) with intervening phrases. By explicitly comparing how closely

interdependence matches with syntax trees rather than coreferences, we ask which of

these underlying structures the model is leveraging to learn language.

5.1.0.0.1 Relation to Chapter 4: Saphra and Lopez (2019) illustrated that some

linguistic properties based on short range dependencies, such as POS tags, are learned

earlier than properties requiring more context, especially topic information. In this

chapter, we suggest a possible explanation: that an LSTM uses shorter constituents as

scaffolding for longer dependencies. However, we don’t present any causal evidence.

In order to make a causal claim, we would need to interfere with this scaffolding phe-

nomenon and observe its effect on the order in which properties are learned, according
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to the SVCCA probe.

5.1.1 Expansions of Contextual Decomposition

In future work, we may question whether Contextual Decomposition (Murdoch et al.,

2018) is the best approach to compute phrase importance. Since Murdoch et al. (2018),

a number of expansions to CD have been published (Jin et al., 2020; Singh et al., 2019a;

Jumelet et al., 2019). Jin et al. (2020) add a sampling step for nearby words in Sam-
pling and Contextual Decomposition (SCD). SCD adheres better to two preferences

in its output: context independence and non-additivity. Context independence is a

preference for credit attribution that is independent of a phrase’s context in a sentence.

For example, in the sentence “Socrates asked a trick question,” we should see “trick

question” retain the same meaning in any other context. This property would mitigate

the change in meaning as we shift to a novel domain, which instead we consider as part

of our analysis in the paper’s Figure 7. Non-additivity means that the representation of

a phrase is a non-linear function of the words that constitute it. Because several exper-

iments in this paper measure nonlinearity and attribution change under domain shift,

switching to SCD would likely obscure the properties under observation, but might

expose how interactions within non-additive phrases (as opposed to idioms or other

multiword expressions) particularly evolve over time.

Other methods of feature credit attribution are deliberately hierarchical. The disadvan-

tage of these alternatives is that they assume the very property of tree-based behavior

that we are trying to discover. Singh et al. (2019a) hierarchically cluster sequentially

proximate words based on CD, introducing agglomerative contextual decomposition
(ACD). Lundberg et al. (2019) similarly propose hierarchical clustering that is model-

independent, based on any SHAP values.

5.1.2 Generalizing to Attentional Models

Do our results generalize to non-recurrent models? Perhaps not, but the methods can.

After the work in this paper, we discovered that it fell into a recent line of work on fea-
ture interaction. In order to investigate the local behavior of constituents as they are

learned or memorized, we can apply Shapley methods to any architecture, including

fully attentional models. Where we can use SHAP, we can also develop interdepen-

dence metrics.
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Some models already have related methods of deriving feature interaction metrics.

In particular, Chen et al. (2020) brought the generic techniques of feature interaction

(Lundberg and Lee, 2017; Lundberg et al., 2019) into Transformer models to test for

syntactic structure. Because their methods already assume latent tree structure, we

cannot test the presence of hierarchical behavior. However, by applying our method

of normalizing by vector magnitude and potentially stratifying by sequential proxim-

ity, we could easily repeat these experiments or other theories of local hierarchical

behavior on Transformer models as well.



Chapter 6

Beyond Words: The Development of

Feature Sparsity

“In this box are all the words I know,” he said. “Most of them you

will never need, some you will use constantly, but with them you

may ask all the questions which have never been answered and

answer all the questions which have never been asked.”

Norton Juster, The Phantom Tollbooth

In Chapters 4 and 5, we explored the temporal dynamics of models acquiring linguistic

structure as training progresses. Here we turn to investigate more abstract properties

of representations and how they evolve. In particular, the following work explores how

feature sparsity naturally emerges in LMs during training.

Rather than consider the gradual development of hierarchical syntactic structure, we

observe the dispersal or concentration (i.e., sparsity) of intermediate vector representa-

tions as a simple function of the frequency and predictability of each word. We better

characterize the relationship between word frequency and the distribution of its “stor-

age” in a model. The time dimension is essential to understanding the contributing

factors to sparsity, because the model is more exposed to a word the longer it trains for,

as well as in response to the word’s corpus frequency.

As well as providing consideration of this crucial confounding factor between word

frequency and a model’s exposure to a word, viewing the time course of training again

offers additional insights. We see how gradients responding to a word become sparser–

meaning salient information is localized to a few neurons–as a network is exposed
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more to that word. This validates work that considers individual neurons rather than

entire subspaces (Torroba Hennigen et al., 2020; Durrani et al., 2020; Dalvi et al.,

2019). We see that LSTM layers quickly correlate word frequency and sparsity, before

the embedding layer surpasses the LSTMs in developing this correlation. The patterns

we observe are, as in Chapter 4’s discussion of the Information Bottleneck Hypothesis,

possibly linked to a memorize/compress phase shift.

Publication Status This work was published in the Identifying and Understanding

Deep Learning Phenomena Workshop at ICML 2019.
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Abstract

Concerns about interpretability, computational
resources, and principled inductive priors have
motivated efforts to engineer sparse neural
models for NLP tasks. If sparsity is impor-
tant for NLP, might well-trained neural models
naturally become roughly sparse? Using the
Taxi-Euclidean norm to measure sparsity, we
find that frequent input words are associated
with concentrated or sparse activations, while
frequent target words are associated with dis-
persed activations but concentrated gradients.
We find that gradients associated with func-
tion words are more concentrated than the gra-
dients of content words, even controlling for
word frequency.

1 Introduction

Researchers in NLP have long relied on engineer-
ing features to reflect the sparse structures under-
lying language. Modern deep learning methods
promised to relegate this practice to history, but
have not eliminated the interest in sparse mod-
eling for NLP. Along with concerns about com-
putational resources (Chen et al., 2016; Narang
et al., 2017b) and interpretability (Murphy et al.,
2012; Subramanian et al., 2018), human intuitions
continue to motivate sparse representations of lan-
guage. For example, some work applies assump-
tions of sparsity to model latent hard categories
such as syntactic dependencies (Padó and Lapata,
2007) or phonemes (Cotterell and Eisner, 2018).
Niculae and Blondel (2017) found that a sparse at-
tention mechanism outperformed dense methods
on some NLP tasks; Narang et al. (2017a) found
sparsified versions of LMs that outperform dense
originals. Attempts to engineer sparsity rest on an
unstated assumption that it doesn’t arise naturally
when neural models are learned. Is this true?

Using a simple measure of sparsity, we analyze
how it arises in different layers of a neural lan-

guage model in relation to word frequency. We
show that the sparsity of a word representation in-
creases with exposure to that word during training.
We also find evidence of syntactic learning: gradi-
ent updates in backpropagation depend on whether
a word’s part of speech is open or closed class,
even controlling for word frequency.

2 Methods

Language model. Our LM is trained on a cor-
pus of tokenized, lowercased English Wikipedia
(70/10/20 train/dev/test split). To reduce the num-
ber of unique words (mostly names) in the corpus,
we excluded any sentence with a word which ap-
pears fewer than 100 times. Those words which
still appear fewer than 100 times after this filter are
replaced with <UNK>. The resulting training set is
over 227 million tokens of around 19.5K types.

We use a standard 2-layer LSTM LM trained
with cross entropy loss for 50 epochs. The
pipeline from input xt−1 at time step t− 1 to pre-
dicted output distribution x̂ for time t is described
in Figure 1, illustrating intermediate activations
het , h1t , and h2t . At training time, the network ob-
serves xt and backpropagates the gradient updates
h̄et , h̄1t , h̄2t , and x̄t.

The embeddings produced by the encoding
layer are 200 units, and the recurrent layers have
200 hidden units each. The batch size is set to
forty, the maximum sequence length to 35, and
the dropout ratio to 0.2. The optimizer is stan-
dard SGD with clipped gradients at `2 = 0.25,
where the learning rate begins at 20 and is quar-
tered whenever loss fails to improve.

Measuring sparsity. We measure the sparsity of
a vector v using the reciprocal of the Taxicab-
Euclidean norm ratio (Repetti et al., 2015). This
measurement has a long history as a measure-
ment of sparsity in natural settings (Zibulevsky
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Figure 1: LM architecture for target word distribution x̂t, showing gradient updates from observed word xt.

Figure 2: Average sparsity χ(h̄2t ) over all training
epochs (x-axis), for target words xt occurring more
than 100k times in training. Target words are sorted
from most frequent (bottom) to least frequent (top).

and Pearlmutter, 2001; Hoyer, 2004; Pham et al.,
2017; Yin et al., 2014) and is formally defined as
χ(v) = ‖v‖2/‖v‖1. The relationship between
sparsity and this ratio is illus-
trated in two dimensions in the
image on the right, in which
darker blue regions are more
concentrated. The pink circle
shows the area where `2 ≤ 1
while the yellow diamond de-
picts `1 ≤ 1. For sparse vectors 〈1, 0〉 or 〈0, 1〉, the
norms are identical so χ is 1, its maximum. For a
uniform vector like 〈1, 1〉, χ is at its smallest. In
general, χ(v) is higher when most elements of v
are close to 0; and lower when the elements are all
similar in value.

3 Experiments

Sparsity is closely related to the behavior of a
model: If only a few units hold most of the mass
of a representation, the activation vector will be
highly concentrated. If a neural network relies
heavily on a small number of units in determining
its predictions, the gradient will be highly concen-
trated. A highly concentrated gradient is mainly
modifying a few specific pathways. For example,

it might modify a neuron associated with particu-
lar inputs like parentheses (Karpathy et al., 2015),
or properties like sentiment (Radford et al., 2017).

Representations of Target Words. Our first ex-
periments look at the relationship of sparsity to tar-
get word xt. Gradient updates triggered by the tar-
get are often used to identify units that are relevant
to a prediction (Li et al., 2015), and as shown in
Figure 2, gradient sparsity increases with both the
frequency of a word in the corpus and the overall
training time. In other words, more exposure leads
to sparser relevance. Because the sparsity of h̄2

increases with target word frequency, we measure
not sparsity itself but the Pearson correlation, over
all words w, between word frequency and mean
χ(h) over representations h where w is the target:

ρ←(h) = corrw(µt:xt=w(χ(ht)), freq(w))

Here (Figure 3a) we confirm that concentrated gra-
dients are not a result of concentrated activations,
as activation sparsity χ(h2) is not correlated with
target word frequency.

The correlation is strong and increasing only
for ρ←(h̄2). The sparse structure being applied
is therefore particular to the gradient passed from
the softmax to the top LSTM layer, related to how
a word interacts with its context.

The Role of Part of Speech. Figure 4 shows
that ρ←(h̄2) follows distinctly different trends for
open POS classes1 and closed classes2. To asso-
ciate words to POS, we tagged our training corpus
with spacy3; we associate a word to a POS only
if the majority (at least 100) of its occurrences are
tagged with that POS. We see that initially, fre-
quent words from closed classes are highly con-
centrated, but soon stabilize, while frequent words
from open classes continue to become more con-
centrated throughout training. Why?

Closed class words clearly signal POS. But
open classes contain many ambiguous words, like

1ADJ, ADV, INTJ, NOUN, PROPN, VERB
2ADP, AUX, CCONJ, DET, PART, PRON, SCONJ
3https://spacy.io/
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(a) ρ← correlation with target word frequency (b) ρ→ correlation with input word frequency

Figure 3: Correlation between mean sparsity of a word’s representation and word frequency. Vertical dashed lines
indicate when the optimizer has rescaled the step size.

Figure 4: ρ←(h̄2), evaluated over vocabulary from
open and closed classes of POS.

“report”, which can be a noun or verb. Open
classes also contain many more words in general.
We posit that early in training, closed classes re-
liably signal syntactic structure, and are essential
for shaping network structure. But open classes
are essential for predicting specific words, so their
importance in training continues to increase after
part of speech tags are effectively learned.

The high sparsity of function word gradient may
be surprising when compared with findings that
content words have a greater influence on out-
puts (Kádár et al., 2016). However, those find-
ings were based on the impact on the vector rep-
resentation of an entire sentence after omitting the
word. Khandelwal et al. (2018) found that content
words have a longer window during which they are
relevant, which may explain the results of Kádár
et al. (2016). Neither of these studies controlled
for word frequency in their analyses contrasting
content and function words, but we believe this
oversight is alleviated in our work by measuring
correlations rather than raw magnitude. Because
ρ←(h̄2) is higher when evaluated over more fre-

Figure 5: Mean sparsity of χ(h̄2) after 50 epochs, for
words occurring more than 1k times in the train set.

quent words, which also tend to be function words
(see Figure 5), we further control for the effect of
frequency by including a measurement of trends in
a sample of 120 words each from open and closed
classes (Figure 4). This sample was selected by
sorting all open and closed class words by fre-
quency, then choosing a range of each sorted list
with a similar average frequency.

Representations of Input Words. We next
looked at the vector representations of each step in
the word sequence as a representation of the input
word xt−1 that produced that step. We measure
the correlation with input word frequency:

ρ→(h) = corrw(µt:xt−1=w(χ(ht)), freq(w))

Here (Figure 3b) we find that the view across
training sheds some light on the learning process.
While the lower recurrent layer quickly learns
sparse representations of common input words,
ρ→(h1) increases more slowly later in training and
is eventually surpassed by ρ→(he), while gradi-
ent sparsity never becomes significantly correlated
with word frequency. Li et al. (2016) studied the
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activations of feedforward networks in terms of
the importance of individual units by erasing a par-
ticular dimension and measuring the difference in
log likelihood of the target class. They found that
importance is concentrated into a small number of
units at the lowest layers in a neural network, and
is more dispersed at higher layers. Our findings
suggest that this effect may be a natural result of
the sparsity of the activations at lower layers.

We relate the trajectory over training to the In-
formation Bottleneck Hypothesis of Shwartz-Ziv
and Tishby (2017). This theory, connected to lan-
guage model training by Saphra and Lopez (2018),
proposes that the earlier stages of training are ded-
icated to learning to effectively represent inputs,
while later in training these representations are
compressed and the optimizer removes input in-
formation extraneous to the task of predicting out-
puts. If extraneous information is encoded in spe-
cific units, this compression would lead to the ob-
served effect, in which the first time the optimizer
rescales the step size, it begins an upward trend in
ρ→ as extraneous units are mitigated.

4 Potential Explanations

Why do common target words have such concen-
trated gradients with respect to the final LSTM
layer? A tempting explanation is that the amount
of information we have about common words of-
fers high confidence and stabilizes most of the
weights, leading to generally smaller gradients. If
this were true, the denominator of sparsity, gra-
dient `1, should be strongly anti-correlated with
word frequency. In fact, it is only ever slightly
anti-correlated (correlation > −.1). Furthermore,
the sparsity of the softmax gradient χ(x̄) does not
exhibit the strong correlation seen in χ(h̄2), so
sparsity at the LSTM gradient is not a direct ef-
fect of sparse logits.

However, the model could still be “high confi-
dence” in terms of how it assigns blame for error
during common events, even if it is barely more
confident overall in its predictions. According to
this hypothesis, a few specialized neurons might
be responsible for the handling of such words.

Perhaps common words play a prototyping role
that defines clusters of other words, and therefore
have a larger impact on these clusters by acting as
attractors within the representation space early on.
Such a process would be similar to how humans
acquire language by learning to use words like

‘dog’ before similar but less prototypical words
like ‘canine’ (Rosch, 1999). As a possible mech-
anism for prototyping with individual units, Dalvi
et al. (2019) found that some neurons in a transla-
tion system specialized in particular word forms,
such as verb inflection or comparative and superla-
tive adjectives. For example, a common compara-
tive adjective like ‘better’ might be used as a reli-
able signal to shape the handling of comparatives
by triggering specialized units, while rarer words
have representations that are more distributed ac-
cording to a small collection of specific contexts.

There may also be some other reason that com-
mon words interact more with specific substruc-
tures within the network. For example, it could be
related to the use of context. Because rare words
use more context than common words and con-
tent words use more context than function words
(Khandelwal et al., 2018), the gradient associated
with a common word would be focused on interac-
tions with the most recent words. This would lead
common word gradients to be more concentrated.

It is possible that frequent words have sparse ac-
tivations because frequency is learned as a feature
and thus is counted by a few dimensions of propor-
tional magnitude, as posited by Li et al. (2016).

5 Potential Applications

Understanding where natural sparsity emerges in
dense networks could be a useful guide in decid-
ing which layers we can apply sparsity constraints
to without affecting model performance, for the
purpose of interpretability or efficiency. It might
also explain why certain techniques are effective:
for example, in some applications, summing rep-
resentations together works quite well (Hill et al.,
2016). We hypothesize that this occurs when the
summed representations are sparse so there is of-
ten little overlap. Understanding sparsity could
help identify cases where such simple ensembling
approaches are likely to be effective.

Future work may develop ways of manipulating
the training regime, as in curriculum learning, to
accelerate the concentration of common words or
incorporating concentration into the training ob-
jective as a regularizer. We would also like to see
how sparsity emerges in models designed for spe-
cific end tasks, and to see whether concentration is
a useful measure for the information compression
predicted by the Information Bottleneck.
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6.1 Comments on the Paper

In this paper, we have investigated the sparsity of activations and, using the same spar-

sity metric applied to gradients, observed how localized change is across neurons.

6.1.1 Localization of Changes

The local loss surface revealed by gradients is not the only way of viewing change

across neurons. Because the optimizer does not follow this surface perfectly, and the

training data is not the only way of viewing change in error, we may want to investigate

change in each neuron through Loss Change Allocation (LCA) (Lan et al., 2019).

6.1.1.1 Loss Change Allocation

LCA is a method that does not look directly at the gradient with respect to training

error, but instead allocates responsibility for actual error change after a training step.

If we consider the loss function over a training set L(θt) with the parameters at timestep t,

LCA is based on a first order Taylor approximation of the path between two timesteps:

L(θt+1)−L(θt) =
∫

θt+1

θt

< ∇θL(θt),dθ > (6.1)

≈< ∇θL(θt),θt+1−θt > (6.2)

This dot product can be reformulated into an element-wise operation, such that we can

consider the individual parameters that contribute to this change in loss. We therefore

define the LCA allocated to parameter unit θ(i) like so:

K−1

∑
i=0

At,i =
K−1

∑
i=0

(∇θL(θt))
(i)(θ

(i)
t+1−θ

(i)
t ) (6.3)

This way, we could consider whether following the gradient in a particular direction

actually leads to a particular unit improving or damaging performance when consid-

ered in combination with the other changes made during that timestep.

Using LCA, Lan et al. (2019) found that only a little over half of parameters actually

help improve performance in their changes at any given time step, with some entire

layers moving against the gradient in a particular timestep and damaging performance.

Because all layers tend to move in synchrony, they hypothesize that these damaging

layers lag behind others while they oscillate back and forth over valleys in the optimiza-

tion landscape, therefore moving against the overall gradient motion. These dynamics
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calls into question a simplistic view of the training process through the lens of the gra-

dient landscape itself. Even from timestep to timestep, the movement of parameters

along the gradient does not translate directly to improvement in the training objective.

6.1.2 Generalizing to Attentional Models

Current Transformer models provide new motivations and methods for considering

sparsity during the forward pass through a neural network. Attention distributions

can be easily measured in terms of their entropy, which offers additional information

about how localized word importance itself might be, as it gives a view of how sparse

attention naturally is across words.



Chapter 7

Conclusion

I don’t know of any wrong road to Dictionopolis, so if this road

goes to Dictionopolis at all it must be the right road, and if it

doesn’t it must be the right road to somewhere else, because there

are no wrong roads to anywhere.

Norton Juster, The Phantom Tollbooth

It is surely unreasonable to claim that a machine achieves high accuracy on a language

task by using the same strategies as a human1. However, in order to generalize well in

the way humans do, we might assume that it is useful for a model to tend to pick up on

similar linguistic structure and cues. Human strategies, often assumed to be encoded

in our brains from birth, are a useful bias to have when handling human languages.

Even when a neural network apparently adopts the language habits we expect from

a human strategy, it does not necessarily learn as a human does. The ways in which

it matches or diverges from human learning give useful hints as to how it matches or

diverges from human language mechanisms and innate biases. If our findings show

anything, they illustrate that an LSTM should not be analyzed like a human brain; it

should be understood as an artificial neural network.

Our methods point to several possible indicators of memorization/compression phase

shifts (Chapters 4 and 6), most evident in embedding dictionaries. We have also discov-

ered that distant content information is removed early in training (Chapter 4), pointing

to the essential role of gradually building long distance relations. We even directly

1Or as Fred Jelinek famously put it: “Every time I fire a linguist, the performance goes up.”
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witness construction of these distant dependencies, explaining how compositional be-

havior emerges, by testing in synthetic environments (Chapter 5). These findings are

just a few of the results from our new methodologies, which are designed to study the

timecourse of neural network training.

7.1 The growing field of NLP training dynamics

When the work in this thesis was first published, it constituted a proposal to connect

the new science of neural network training dynamics with the nascent trend of relating

contextual word representations to linguistic properties. Now, questions about how

word representations develop during training are becoming commonplace.

In 2020, the year following the publication of Saphra and Lopez (2019), the first of the

papers in this thesis, the NLP community began to take a serious look at what happens

during the LM training process. Chiang et al. (2020) performed “embryology” on

the pretrained attentional model ALBERT (Lan et al., 2020), finding that it learned to

predict different parts of speech at different speeds. Liu et al. (2021) further found that

RoBERTa acquired different probed properties at different rates. Hao et al. (2020) and

Merchant et al. (2020) investigated learning dynamics during fine-tuning of attentional

models, confirming through a variety of techniques that most changes occur in the

last layer during the task change. Zhang et al. (2020) and Warstadt et al. (2020) both

measured performance of RoBERTa (Liu et al., 2019b) pretraining when exposed to

varying corpus sizes, an important conflation factor for exposure to more data due to

increased training time.

Hao et al. (2020) and Merchant et al. (2020) represent a particular new subgenre of sci-

entific work in understanding LM training: what we might call fine-tuning research2,

studying how self-supervised pretraining positions a model to be efficiently fine-tuned

for a supervised task. Dodge et al. (2020), for example, revealed that fine-tuning seeds

with better accuracy immediately after pretraining tend to produce fine-tuned models

with better accuracy after training. Pretrained representations are even highly robust

to pruning immediately before finetuning, as found by both Prasanna et al. (2020) and

Radiya-Dixit and Wang (2020). However, a dearth of access to checkpoints (at least of

massive modern models) during pretraining limits similar research of training dynam-

ics prior to the start of finetuning.

2Though Wang (2020) calls it developmental BERTology.
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The taste for a clear understanding of how linguistic properties evolve is perhaps best

exemplified by the release of LINSPECTOR WEB (Eichler et al., 2019), a probing

suite for word representations which handles multiple languages. This tool was re-

leased with a feature that allows it to probe multiple checkpoints during training, with

the declaration that it was “considered a crucial feature as it provides insights on learn-

ing dynamics of models (Saphra and Lopez, 2019)”.

7.2 Future work

The work presented in this thesis is only the very beginning of the possibilities in

NLP training dynamics. Most obviously, future work should expand into modern fully

attentional networks. Beyond that, a number of goals and methods have been left yet

untouched.

7.2.1 Loss landscapes

None of the work in this thesis has explicitly considered optimization processes or the

loss landscape being explored. This is a major gap, given that such methods have led

to a number of insights.

One property of interest is whether you can shift the final weights from their learned

space slightly and maintain similar performance, or whether instead performance abruptly

degrades even for very close alternative parameter settings. There is a long-standing

debate about whether this property, the width of the optimum, determines whether a

solution generalizes to a test set (Li et al., 2018; Dinh et al., 2017; Keskar et al., 2017;

Hochreiter and Schmidhuber, 1997a). Some research has suggested that pretrained

representations tend to be at wider optima (Hao et al., 2019), which may hint at why

pretraining is such an effective strategy.

Other landscape properties are yet unexplored, even at the pretrain/finetune boundary.

Mode connectivity (Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020)

yields the surprising insight that overparameterized models like modern DNNs have

landscapes of massive valleys, in which every point with a particular training loss

is connected to every other such point, and have a connecting path where the loss

remains the same through the entire path. Empirically, in simple vision contexts, the

test loss even remains the same along the whole path. Module criticality is predicted
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by whether there is a wide valley connecting initial and final values of a module, and is

predictive of generalization in the final model (Chatterji et al., 2020). These concepts

are largely unexplored for the pretraining process itself, outside of finetuning research.

7.2.2 Visualization

Techniques like Multi-Dimensional Scaling (MDS; as used by Saxe et al. (2019) and

shown in Figure 3.4) and M-PHATE (Gigante et al., 2019) have provided 2-dimensional

visualizations that are particular to the training process. These methods ensure that

local movement from epoch to epoch remains clearly connected in the resulting visu-

alization. What if we looked at specific words, or particular inflections, and how they

relate to each other over the course of training? What insights might these methods

yield?

7.2.3 Understanding phases and early training

Section 3.1 described a number of phase transition phenomena that have been observed

in neural networks. However, we don’t understand how they relate to each other well.

Could a detailed study of different phase transitions lead to better understanding of the

early stages of training? When it comes to language, are these phases synchronized or

do they apply to different concepts individually, as different POS tags are learned at

different speeds (Chiang et al., 2020)?

7.2.4 Trajectory analysis

Much recent work in training dynamics has focused on the Neural Tangent Kernel
(NTK; Jacot et al., 2018). In this formulation, we approximate the gradient trajectory

with a linear function, resulting in an approximation that is empirically close to the

true gradient trajectory. A linear function is easy to employ in proof work, compared

to most gradients—but usually, this technique requires unrealistic assumptions like an

infinite-width neural network, and it has been used mostly on simplistic architectures

with toy problems. Hu et al. (2020), however, use the NTK of a network early in train-

ing to study dynamics in a finite-width setting, so we are likely to see more trajectory

results that apply to less constrained settings. Even without NTK methods, Lu et al.

(2021) proved that attention key-value weights mutually reinforce each other’s magni-

tude during training. Trajectory-based methods, NTK or otherwise, may be one way to
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study how inductive bias helps learn latent tree structure or other underlying semantics.

7.2.5 Improving future models

Does this help us improve future models? First we would have to answer whether

magnifying a natural bias strengthens or weakens a model. For example, if a model’s

attention doesn’t actually resemble human attention in reading, then there is no reason

to believe that it could be improved by making its development more humanlike, such

as by imposing heuristics based on sentence complexity. Models clearly learn with

an implicit curriculum (Wu et al., 2020b), but it is hard to find high-resource tasks

where a curriculum ordered based on easiness improves on the default training stages.

However, the results in Chapter 5 suggest a possible reason why a curriculum for learn-

ing short or syntactically shallow sequences first is unproductive: these examples are

already used as scaffolding for longer dependencies.

Other insights might point us towards enhancing the current models or even developing

better ones in the future. Chapter 6 tells us that some layers produce naturally sparse

representations; with hardware that takes advantage of sparsity, we can make some

weights and representations completely sparse based on these insights, while allow-

ing others to remain dense. However, even if insights about training dynamics never

improve the performance of models in practice, understanding why systems work is

basic scientific research. Modern models might be far more trusted if they were better

understood.

Training dynamics as a field continues to develop new techniques for analyzing the

learning process, while the NLP interpretability community continues to yield new

discoveries about the inner workings of language models. The work of understanding

how language develops in a neural network is far from complete, but the intersection of

these two communities is growing. Our understanding of language model development

is still expanding, moving into an increasingly complex description of the world.
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